

(AN UGC AUTONOMOUS INSTITUTION)

Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade Recognized Under Section
2(f) of UGC Act 1956, ISO 9001:2015 Certified Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500

005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

 (R22)

 OOP through Java

Lecture Notes

 B. Tech II YEAR – I SEM

Prepared by

MOHD ANAS ALI
(Assistant Professor)

Dept. CSE(AIML)

http://www.mist.ac.in/
http://www.mist.ac.in/

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem. L T P C

 3 0 0 3

Course Objectives

● To Understand the basic object-oriented programming concepts and apply them in
problem solving.

● To Illustrate inheritance concepts for reusing the program.

● To Demonstrate multitasking by using multiple threads and event handling

● To Develop data-centric applications using JDBC.

● To Understand the basics of java console and GUI based programming Course
Outcomes

● Demonstrate the behavior of programs involving the basic programming constructs like
control structures, constructors, string handling and garbage collection.

● Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by
using extend and implement keywords

● Use multithreading concepts to develop inter process communication.

 ● Understand the process of graphical user interface design and implementation using
AWT or swings.

● Develop applets that interact abundantly with the client environment and deploy on the
server

UNIT - I Object oriented thinking and Java Basics- Need for oop paradigm, summary of
oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world –
Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types,
variables, scope and lifetime of variables, arrays, operators, expressions, control
statements, type conversion and casting, simple java program, concepts of classes,
objects, constructors, methods, access control, this keyword, garbage collection,
overloading methods and constructors, method binding, inheritance, overriding and
exceptions, parameter passing, recursion, nested and inner classes, exploring string
class.

 UNIT - II Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class
object, subclass, subtype, substitutability, forms of inheritance specialization,
specification, construction, extension, limitation, combination, benefits of inheritance,
costs of inheritance. Member access rules, super uses, using final with inheritance,
polymorphism- method overriding, abstract classes, the Object class. Defining, Creating
and Accessing a Package, Understanding CLASSPATH, importing packages, differences
between classes and interfaces, defining an interface, implementing interface, applying
interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III Exception handling and Multithreading-- Concepts of exception handling,
benefits of exception handling, Termination or resumptive models, exception hierarchy,
usage of try, catch, throw, throws and finally, built in exceptions, creating own exception
subclasses. String handling, Exploring java.util. Differences between multithreading and
multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads,
inter thread communication, thread groups, daemon threads. Enumerations, autoboxing,
annotations, generics.

UNIT - IV Event Handling: Events, Event sources, Event classes, Event Listeners,
Delegation event model, handling mouse and keyboard events, Adapter classes. The
AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text
components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs,
menubar, graphics, layout manager – layout manager types – border, grid, flow, card and
grid bag.

UNIT - V Applets – Concepts of Applets, differences between applets and applications, life
cycle of an applet, types of applets, creating applets, passing parameters to applets.
Swing – Introduction, limitations of AWT, MVC architecture, components, containers,
exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons
– The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll
Panes, Trees, and Tables.

Object Oriented Programming using JAVA

UNIT I

UNIT-I 1

UNIT I

Introduction to Java: The key attributes of object oriented programming,

Simple program, The Java keywords, Identifiers, Data types and

operators, Program control statements, Arrays, Strings, String Handling

Introduction:
 JAVA is a programming language.

 Computer language innovation and development occurs for two fundamental reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

 Java is related to C++, which is a direct descendant of C. Much of the character of Java

is inherited from these two languages. From C, Java derives its syntax. Many of Java’s

object- oriented features were influenced by C++.

 Definition: Object-oriented programming (OOP) is a programming methodology that

helps organize complex programs through the use of inheritance, encapsulation, and

polymorphism.

 Java was developed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank,

and Mike Sheridan at Sun Microsystems, Inc. in 1991. This language was initially called

“Oak,” but was renamed “Java” in 1995.

 Java was not designed to replace C++. Java was designed to solve a certain set of

problems. C++ was designed to solve a different set of problems.

 Java contribution to internet:

Java programming had a profound effect on internet.

 Java Applets
An applet is a special kind of Java program that is designed to be transmitted over the Internet

and automatically executed by a Java-compatible web browser.

 Security
Every time you download a “normal” program, you are taking a risk, because the code you are

downloading might contain a virus, Trojan horse, or other harmful code.

In order for Java to enable applets to be downloaded and executed on the client computer

safely, it was necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment and not

allowing it access to other parts of the computer.

UNIT-I 2

JAVA PROGRAMMING

 Portability
Portability is a major aspect of the Internet because there are many different types of computers

and operating systems connected to it. Java programming provide portability

Byte code:

The output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly

optimized set of instructions designed to be executed by the Java run-time system, which is

called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an

interpreter for bytecode.

 Servlets: Java on the Server Side
A servlet is a small program that executes on the server. Just as applets dynamically extend the

functionality of a web browser, servlets dynamically extend the functionality of a web server.

 The Java Buzzwords
o Simple

o Secure
o Portable
o Object-oriented
o Robust
o Multithreaded
o Architecture-neutral
o Interpreted
o High performance
o Distributed

o Dynamic

 Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at

least some extent object-oriented.

Two Paradigms
All computer programs consist of two elements: code and data. Furthermore, a program can be

conceptually organized around its code or around its data.

Some programs are written around “what is happening” and others are written around “who is

being affected.” These are the two paradigms that govern how a program is constructed.

The first way is called the process-oriented model. The process-oriented model can be

thought of as code acting on data. Procedural languages such as C employ this model

to considerable success.

Object-oriented programming organizes a program around its data (that is, objects) and a set of

well-defined interfaces to that data. An object oriented program can be characterized as data

controlling access to code.

UNIT-I 3

JAVA PROGRAMMING

The key Attributes of OOP:
All object-oriented programming languages provide mechanisms that help you implement the

object-oriented model. They are encapsulation, inheritance, and polymorphism.

Encapsulation
 Encapsulation is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse.

 In Java, the basis of encapsulation is the class.

 A class defines the structure and behavior (data and code) that will be shared by a set

of objects. Each object of a given class contains the structure and behavior defined by

the class. Objects are sometimes referred to as instances of a class.

 Thus, a class is a logical construct; an object has physical reality.

 The code and data that constitute a class are called members of the class. Specifically,

the data defined by the class are referred to as member variables or instance variables.

The code that operates on that data is referred to as member methods or just methods

 Each method or variable in a class may be marked private or public. The public interface

of a class represents everything that external users of the class need to know, or may

know. The private methods and data can only be accessed by code that is a member of

the class

Inheritance
 Inheritance is the process by which one object acquires the properties of another

object. This is important because it supports the concept of hierarchical classification.

 Inheritance interacts with encapsulation as well. If a given class encapsulates some

attributes, then any subclass will have the same attributes plus any that it adds as part

of its specialization

 A new subclass inherits all of the attributes of all of its ancestors.

Polymorphism
 Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface

to be used for a general class of actions.

 More generally, the concept of polymorphism is often expressed by the phrase “one

interface, multiple methods.” This means that it is possible to design a generic interface

to a group of related activities. This helps reduce complexity by allowing the same

interface to be used to specify a general class of action.

UNIT-I 4

JAVA PROGRAMMING

A First Simple Program

/*

This is a simple Java program.

Call this file Example.java.

*/

class Example {

// A Java program begins with a call to main().

public static void main(String[] args) {

System.out.println("Java drives the Web.");

}

}

Entering the program:

The first step in creating a program is to enter its source code into the computer.

The name you give to a source file is very important. In Java, a source file is officially called a compilation
unit. It is a text file that contains (among other things) one or more class definitions. The Java compiler
requires that a source file use the .java filename extension

The name of the main class should match the name of the file that holds the program.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the source file on
the command line, as shown here:

| javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of the program.
The output of javac is not code that can be directly executed.

Running the program

To actually run the program, you must use the Java application launcher called java.

To do so, pass the class name Example as a command-line argument, as shown here:

| java Example

When the program is run, the following output is displayed:

| Java drives the Web.

UNIT-I 5

JAVA PROGRAMMING

First simple program line by line

The program begins with the following lines:

/*

This is a simple Java program. Call this

file ″Example.java″.

*/

This is a comment. The contents of a comment are ignored by the compiler. This is multiline

comment

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an identifier that

is the name of the class. The entire class definition, including all of its members, will be between the opening
curly brace ({) and the closing curly brace (}).

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

public static void main(String args[]) {

This line begins the main() method. All Java applications begin execution by calling main().

The public keyword is an access modifier, which allows the programmer to control the visibility of
class members. When a class member is preceded by public, then that member may be accessed
by code outside the class in which it is declared. main() must be declared as public, since it must
be called by code outside of its class when the program is started. The keyword static allows main(
) to be called without having to instantiate a particular instance of the class. This is necessary since
main() is called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value.

In main(), there is only one parameter, String args[] declares a parameter named args, which is
an array of instances of the class String. Objects of type String store character strings. In this case,
args receives any command-line arguments present when the program is executed.

System.out.println(″Java drives the Web.″);

This line outputs the string “Java drives the Web.” followed by a new line on the screen. Output is
actually accomplished by the built-in println() method. In this case, println() displays the string
which is passed to it. The line begins with System.out. System is a predefined class that provides
access to the system, and out is the output stream that is connected to the console.

UNIT-I 6

JAVA PROGRAMMING

Example2:

/*

This demonstrates a variable.
Call this file Example2.java.

*/

class Example2 {

public static void main(String[] args) {
int var1; // this declares a variable

int var2; // this declares another variable
var1 = 1024; // this assigns 1024 to var1
System.out.println("var1 contains " + var1);
var2 = var1 / 2;
System.out.print("var2 contains var1 / 2: ");
System.out.println(var2);

}

}

O /P:

var1 contains 1024

var2 contains var1 / 2: 512

Example3:

/*

This program illustrates the differences between int and double.

Call this file Example3.java.

*/

Class Example3 {

public static void main(String[] args) {
int w; // this declares an int variable

double x; // this declares a floating-point variable
w = 10; // assign w the value 10

x = 10.0; // assign x the value 10.0
System.out.println("Original value of w: " + w);
System.out.println("Original value of x: " + x);
System.out.println(); // print a blank line
// now, divide both by 4
w = w / 4;

x = x / 4;

System.out.println("w after division: " + w);
System.out.println("x after division: " + x);

}

}

O/P

Original value of w: 10
Original value of x: 10.0

w after division: 2 x a

f ter division: 2.5

UNIT-I 7

JAVA PROGRAMMING

Example:

/*

Try This 1-1

This program converts gallons to liters.
Call this program GalToLit.java.

*/

class GalToLit {

public static void main(String[] args) {

double gallons; // holds the number of gallons
double liters; // holds conversion to liters

gallons = 10; // start with 10 gallons
liters = gallons * 3.7854; // convert to liters
System.out.println(gallons + " gallons is " + liters + " liters.");

}

}

O/P:
10.0 gallons is 37.854 liters.

The Java Keywords
There are 50 keywords currently defined in the Java language. These keywords, combined with the

syntax of the operators and separators, form the foundation of the Java language.

These keywords cannot be used as identifiers. Thus, they cannot be used as names for a variable, class,

or method.

The keywords const and goto are reserved but not used.

Identifiers
Identifiers are used to name things, such as classes, variables, and methods. An identifier may be any

descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and dollar- sign

characters. (The dollar-sign character is not intended for general use.) They must not begin with a number.

Java is case-sensitive, so VALUE is a different identifier than Value. Some examples of valid identifiers are

GalToLit, Test, x, y2, maxLoad, my_var.

Invalid identifier names include these: 12x, not/ok.

UNIT-I 8

JAVA PROGRAMMING

The Primitive Data Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and

boolean. The primitive types are also commonly referred to as simple types .These can

be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued

signed numbers.

All of these are signed, positive and negative values. Java does not support unsigned, positive-only integers.

// Compute distance light travels using long variables. import

java.util.Scanner;

class Light {

public static void main(String args[]) {

int days;

long lightspeed;

long seconds;

long distance;

// approximate speed of light in miles per

second lightspeed = 186000;

Scanner sc=new Scanner(System.in);

System.out.println("Enter number of days");

days=sc.nextInt();

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute

distance System.out.print("In " + days);

System.out.print(" days light will travel about ");

System.out.println(distance + " miles.");

}

}

O/P:

Enter number of days 10

In 10 days light will travel about 160704000000 miles.

UNIT-I 9

JAVA PROGRAMMING

• Floating-point numbers This group includes float and double, which represent

numbers with fractional precision.

// Compute the area of a

circle. import

java.util.Scanner;

class Area {

public static void main(String args[]) {

double pi, r, a;

Scanner input= new

Scanner(System.in); pi = 3.1416; // pi,

approximately System.out.println("Enter

radius "); r=input.nextDouble();

a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);

}

}

O/P:

Enter radius 10.8

Area of circle is 366.436224

• Characters This group includes char, which represents symbols in a character set, like

letters and numbers.

In Java char is a 16-bit type. The range of a char is 0 to 65,535. There are no negative chars.

// Character variables can be handled like integers.

class CharArithDemo {

public static void main(String[] args) {

char ch;

ch = 'X';

System.out.println("ch contains " + ch);

ch++; // increment ch

System.out.println("ch is now " + ch);

ch = 90; // give ch the value Z

System.out.println("ch is now " + ch);

}

}

O/P:

ch contains X ch is

now Y ch is now Z

UNIT-I 10

JAVA PROGRAMMING

• Boolean This group includes boolean, which is a special type for representing true/false
values.

// Demonstrate boolean

values. class BoolDemo {

public static void main(String[] args) {

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed."); b

= false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

O/P:

b is false b is

true

This is executed.

10 > 9 is true

Literals are also commonly called constants

Java provides special escape sequences sometimes referred to as backslash character constants

Escape
Sequen
ce

Character

\n newline

\t tab

\b backspace

\f form feed

\r return

\" " (double quote)

\' ' (single quote)

\\ \ (back slash)

\uDDDD
character from the Unicode
character set (DDDD is four hex

digits)

UNIT-I 11

JAVA PROGRAMMING

Operators:
An operator is a symbol that tells the compiler to perform a specific mathematical, logical, or other

manipulation. Java has four general classes of operators: arithmetic, bitwise, relational, and logical. Java

also defines some additional operators that handle certain special situations.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Operato
r

Meaning

+ Addition(also unary plus)

- Subtraction(also unary
minus)

* Multiplication
/ Division

% Modulus

++ Increment

-- Decrement
The operands of the arithmetic operators must be of a numeric type. We cannot use them on boolean

types, but we can use them on char types, since the char type in Java is, essentially, a subset of int.

When the division operator is applied to an integer type, there will be no fractional component attached to

the result. The modulus operator, %, returns the remainder of a division operation. It can be applied to

floating-point types as well as integer types.

// Demonstrate the % operator. class

ModDemo {

public static void main(String[] args) {

int iresult, irem;

double dresult, drem;

iresult = 10 / 3;

irem = 10 % 3;

dresult = 10.0 / 3.0;

drem = 10.0 % 3.0;

System.out.println("Result and remainder of 10 / 3: " + iresult + " " + irem);

System.out.println("Result and remainder of 10.0 / 3.0: " + dresult + " " + drem);

}

}

O/P:

Result and remainder of 10 / 3: 3 1

Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

UNIT-I 12

JAVA PROGRAMMING

Increment and Decrement
The increment operator increases its operand by one. The decrement operator decreases its operand by

one. For example, this statement: x = x + 1;

can be rewritten like this by use of the increment operator: x++;

Similarly, this statement: x = x - 1;

is equivalent to x--;

Both increment and decrement operators can either prefix or postfix the operand.

There is no difference between the prefix and postfix forms. However, when the increment and/or

decrement operators are part of a larger expression, there is an important difference between these two

forms appears. In the prefix form, the operand is incremented or decremented before the value is obtained

for use in the expression. In postfix form, the previous value is obtained for use in the expression, and then

the operand is modified

EG:

x=10;

y=++x;

in this case y will be set to 11

x=10;

y=x++;

then y will be set to 10

// Demonstrate ++.
class IncDec {

public static void main(String args[]) {
int a = 1;
int b = 2;
int c;

int d;

c = ++b;
d = a++;
c++;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);

}

}

The output of this program follows:
a = 2

b = 3

c = 4

d = 1

UNIT-I 13

JAVA PROGRAMMING

Relational and Logical Operators
The relational operators determine the relationship that one operand has to the other.

Operato
r

Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal
to

<= Less than or equal to

The outcome of these operations is a boolean value.

Java does not define true and false in the same way as C/C++. In C/ C++, true is any nonzero value

and false is zero. In Java, true and false are nonnumeric values that do not relate to zero or nonzero.

Therefore, to test for zero or nonzero, you must explicitly employ one or more of the relational

operators

Logical operators combine two boolean values to form a resultant Boolean value.

Operato
r

Meaning

& AND

| OR

^ XOR

|| Short-circuit OR

&& Short-circuit AND

! NOT

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way that they operate

on the bits of an integer. The logical ! operator inverts the Boolean state: !true == false and

!false == true. The following table shows the effect of each logical operation:

UNIT-I 14

JAVA PROGRAMMING

// Demonstrate the relational and logical operators. class

RelLogOps {

public static void main(String [] args) {

int i, j;

boolean b1,

b2; i = 10;

j = 11;

if(i < j)

System.out.println("i < j");

if(i <= j)

System.out.println("i <= j");

if(i != j)

System.out.println("i != j");

if(i == j)

System.out.println("this won't execute");

if(i >= j)

System.out.println("this won't execute");

if(i > j)

System.out.println("this won't execute");

b1 = true;

b2 = false;

if(b1 & b2)

System.out.println("this won't execute");

if(!(b1 & b2))

System.out.println("!(b1 & b2) is true");

if(b1 | b2)

System.out.println("b1 | b2 is true");

if(b1 ^ b2)

System.out.println("b1 ^ b2 is true");

}

}

O/P:

i < j

i <= j i != j

!(b1 & b2) is true b1 | b2

is true

b1 ^ b2 is true

UNIT-I 15

JAVA PROGRAMMING

Short-circuit Logical operators:
These are secondary versions of the Boolean AND and OR operators, and are commonly known as

short-circuit logical operators.

The difference between normal and short-circuit versions is that the normal operands will always

evaluate each operand, but short-circuit versions will evaluate the second operand only when

necessary.

When the right-hand operand depends on the value of the left one in order to function properly. For

example, the following code fragment shows how you can take advantage of short-circuit logical

evaluation to be sure that a division operation will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception

when denom is zero. If this line of code were written using the single &version of AND, both sides

would be evaluated, causing a run-time exception when denom is zero.

// Demonstrate the short-circuit

operators. class SCops {

public static void main(String[] args) {

int n, d, q;

n = 10;

d = 2;

if(d != 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n); d

= 0; // now, set d to zero

// Since d is zero, the second operand is not

evaluated. if(d != 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n);

/* Now, try same thing without short-circuit operator.

This will cause a divide-by-zero error.

*/

if(d != 0 & (n % d) == 0) System.out.println(d

+ " is a factor of " + n);

}

}

UNIT-I 16

JAVA PROGRAMMING

Assignment operators:
The assignment operator is the single equal

sign, =. It has this general form: var =

expression;

Here, the type of var must be compatible with the type of expression.

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement.

Java provides special operators that can be used to combine an arithmetic operation with an assignment.

a = a + 4; can rewrite as: a += 4;

There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form var = var op expression; can be rewritten as var op=
expression;

Operator Precedence
The following table shows the order of precedence for Java operators, from highest to lowest.

Operators in the same row are equal in precedence. In binary operations, the order of evaluation is

left to right (except for assignment, which evaluates right to left). Although they are technically

separators, the [], (), and . can also act like operators. In that capacity, they would have the highest

precedence.

The Precedence of the Java Operators

Using Parentheses
Parentheses raise the precedence of the operations that are inside them.

UNIT-I 17

JAVA PROGRAMMING

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int,

short, char, and byte. These operators act upon the individual bits of their operands.

They are summarized in the following table:

The Bitwise Logical Operators
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each

operation.

// Uppercase letters. class

UpCase {

public static void main(String[] args) {

char ch;

for(int i=0; i < 10; i++) {

ch = (char) ('a' + i);

System.out.print(ch);

// This statement turns off the 6th bit.

ch = (char) ((int) ch & 65503); // ch is now uppercase

System.out.print(ch + " ");

}

}

}

O/P:

aA bB cC dD eE fF gG hH iI jJ

UNIT-I 18

JAVA PROGRAMMING

// Lowercase letters. class
LowCase {

public static void main(String[] args) {
char ch;
for(int i=0; i < 10; i++) {
ch = (char) ('A' + i);
System.out.print(ch);

// This statement turns on the 6th bit.

ch = (char) ((int) ch | 32); // ch is now lowercase
System.out.print(ch + " ");

}

}

}

O/P:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has

this general form:

value << num Here, num specifies the number of positions to left-shift the value in value.

The Right Shift
The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times.

Its general form is shown here:

value >> num Here, num specifies the number of positions to right-shift the value in value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of if-then- else

statements. This operator is the ?.

The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If

expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated.

import java.util.Scanner;

public class Largest

{

public static void main(String[] args)

{

int a, b, c, d;

Scanner s = new Scanner(System.in);
System.out.println("Enter all three numbers:");
a = s.nextInt();
b = s.nextInt();
c = s.nextInt();

d = a>b?(a>c?a:c):(b>c?b:c);

System.out.println("Largest of "+a+","+b+","+c+" is: "+d);

}

}

UNIT-I 19

JAVA PROGRAMMING

Control Statements
A programming language uses control statements to cause the flow of execution to advance and

branch based on changes to the state of a program. Java’s program control statements can be put

into the following categories: Selection, Iteration and Jump.

Selection statements allow your program to choose different paths of execution based upon the

outcome of an expression or the state of a variable. Iteration statements enable program execution

to repeat one or more statements (that is, iteration statements form loops). Jump statements allow

your program to execute in a nonlinear fashion.

Input characters from the keyboard
To read a character from keyboard we can use System.in.read (). The read() waits until the user

presses a key and then returns the result. The character returned as an integer, so it must be cast

into a char to assign it to a char variable.

// Read a character from the keyboard.

class KbIn {

public static void main(String[] args)

throws java.io.IOException {

char ch;

System.out.print("Press a key followed by ENTER: ");

ch = (char) System.in.read(); // get a char

System.out.println("Your key is: " + ch);

}

}

O/P:
Press a key followed by ENTER: k Your
key is: k
The above program uses throws java.io.IOException .This line is necessary to handle input errors. It is

a part of java exception handling mechanism.

if statement:
The if statement is Java’s conditional branch statement. It can be used to route program execution through

two different paths. Here is the general form of the if statement:

if (condition)

statement1; else

statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly braces (that

is, a block). The condition is any expression that returns a boolean value. The else clause is optional.

UNIT-I 20

JAVA PROGRAMMING

// Guess the letter game.

class Guess {

public static void main(String[] args)

throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");

System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // read a char from the

keyboard if(ch == answer) System.out.println("** Right **");

}

}

The next version uses else to print a message when the wrong letter is picked

// Guess the letter game, 2nd version. class

Guess2 {

public static void main(String[] args)

throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");

System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // get a char

if(ch == answer) System.out.println("** Right **");

else System.out.println("...Sorry, you're wrong.");

}

}

Nested ifs
A nested if is an if statement that is the target of another if or else. When you nest ifs, the main thing to

remember is that an else statement always refers to the nearest if statement that is within the same block

as the else and that is not already associated with an else.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if else-if

ladder. It looks like

this: if(condition)
statement;

else if(condition)
statement;

else if(condition)

statement;
...

else

statement;

UNIT-I 21

JAVA PROGRAMMING

The if statements are executed from the top down. As soon as one of the conditions controlling the if is

true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the

conditions is true, then the final else statement will be executed. The final else acts as a default condition;

// Demonstrate an if-else-if ladder.
class Ladder {

public static void main(String[] args) {
int x;
for(x=0; x<6; x++) {
if(x==1)
System.out.println("x is one");

else if(x==2)
System.out.println("x is two");
else if(x==3)
System.out.println("x is three");
else if(x==4)
System.out.println("x is four");
else
System.out.println("x is not between 1 and 4");

}

}

}

O/P:

x is not between 1 and 4 x is
one
x is two x is
three x is four
x is not between 1 and 4

switch
The switch provides for a multi-way branch. It often provides a better alternative than a large series of if-

else-if statements.

Here is the general form of a switch statement:

UNIT-I 22

JAVA PROGRAMMING

// Demonstrate the switch. class

SwitchDemo {

public static void main(String[] args) {

int i;

for(i=0; i<10; i++)

switch(i) {

case 0: System.out.println("i is zero");

break;

case 1: System.out.println("i is one");

break;

case 2: System.out.println("i is two");

break;

case 3: System.out.println("i is three");

break;

case 4: System.out.println("i is four");

break;

default: System.out.println("i is five or more");

}

}

}

The break statement is optional. If you omit the break, execution will continue on into the next

case.
Nested switch Statements

We can use a switch as part of the statement sequence of an outer switch. This is called a nested

switch. Since a switch statement defines its own block, no conflicts arise between the case

constants in the inner switch and those in the outer switch. For example, the following fragment is

perfectly valid:

switch(count) {

case 1:switch(target) { // nested switch

case 0: System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

case 2: // …

}

break;

UNIT-I 23

JAVA PROGRAMMING

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression. That is, the switch looks only for a match between

the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a switch

statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

Iteration Statements
Java’s iteration statements are for, while, and do-

while. while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its controlling

expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the

conditional expression is true. When condition becomes false, control passes to the next line of code

immediately following the loop. The curly braces are unnecessary if only a single statement is being

repeated

// Demonstrate the while loop. class
WhileDemo {

public static void main(String[] args) {

char ch;
// print the alphabet using a while loop
ch = 'a';
while(ch <= 'z') {
System.out.print(ch);
ch++;

}

}

}

do-while
The do-while loop always executes its body at least once, because its conditional expression is at the

bottom of the loop. Its general form is

do {

// body of loop

} while (condition);
The do-while loop is especially useful when you process a menu selection, because you will usually

want the body of a menu loop to execute at least once.

UNIT-I 24

JAVA PROGRAMMING

// body

}

The general form of the traditional for

statement: for(initialization; condition;

iteration) {

for loop

class SqrRoot {

// Show square roots of 1 to 9.

public static void main(String[] args) {

double num, sroot;

for(num = 1.0; num < 10.0; num++) {

sroot = Math.sqrt(num);

System.out.println("Square root of " + num +

" is " + sroot);

}

}

}

Some variations on for loop:
 It is possible to declare the variable inside the initialization portion of the for.

// compute the sum and product of the numbers 1
through 5 for(int i = 1; i <= 5; i++) {
sum += i; // i is known throughout the
loop product *= i;

}
When you declare a variable inside a for loop, there is one important point to remember: the

scope of that variable ends when the for statement does.

 When using multiple loop control variables the initialization and iteration expressions

for each variable are separated by commas.

for(i=0, j=10; i < j; i++, j--)

System.out.println("i and j: " + i + " " +

j);

 It is possible for any or all of the initialization, condition, or iteration portions of the for

loop to be blank.

i = 0; // move initialization out of
loop for(; i < 10;) {
System.out.println("Pass #" + i);
i++; // increment loop control var

}

NESTED LOOPS:
Java allows loops to be nested. That is, one loop may be inside another.

for(i=0; i<=5; i++) {

for(j=1; j<=i; j++)

System.out.print("*"

JAVA PROGRAMMING

); System.out.println();

}

UNIT-I 25

JAVA PROGRAMMING

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a statement

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as a

“civilized” form of goto.

Using break to Exit a Loop: By using break, you can force immediate termination of a loop,

bypassing the conditional expression and any remaining code in the body of the loop.

// Using break to exit a loop.
class BreakDemo {

public static void main(String[] args) {
int num;

num = 100;

// loop while i-squared is less than
num for(int i=0; i < num; i++) {
if(i*i >= num) break; // terminate loop if i*i >= 100
System.out.print(i + " ");

}

System.out.println("Loop complete.");

}

}
When used inside a set of nested loops, the break statement will only break out of the innermost loop

Using break as a Form of Goto: The break statement can also be employed by itself to

provide a “civilized” form of the goto statement.

The general form of the labeled break statement is shown

here: break label;

// Using break with a label.
class Break4 {

public static void main(String[] args) {
int i;

for(i=1; i<4; i++) { one: {

two: {

three: {

System.out.println("\ni is " + i);
if(i==1) break one;
if(i==2) break two; if(i==3)
break three;
// this is never reached
System.out.println("won't print");

}

System.out.println("After block three.");

}

System.out.println("After block two.");

}

System.out.println("After block one.");

}

System.out.println("After for.");

}

}

UNIT-I 26

JAVA PROGRAMMING

Using continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure. This is

accomplished using continue. The continue statement forces the next iteration of the loop to take place,

skipping any code between itself and the conditional expression that controls the loop.

// Use continue.
class ContDemo {

public static void main(String[] args) {
int i;
// print even numbers between 0 and 100
for(i = 0; i<=100; i++) {
if((i%2) != 0) continue; // iterate
System.out.println(i);

}

}

}
As with the break statement, continue may specify a label to describe which enclosing loop to continue.

Here is an example program that uses continue to print a triangular multiplication table for 0 through 9:

// Using continue with a label.

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {

for(int j=0; j<10; j++) {

if(j > i) {

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

The continue statement in this example terminates the loop counting j and continues with the next

iteration of the loop counting i. Here is the output of this program:

return
The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method.

UNIT-I 27

JAVA PROGRAMMING

ARRAYS:
An array is a collection of variables of same type, referred to by a common name. Arrays of any type can

be created and may have one or more dimensions. A specific element in an array is accessed by its index.

Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables.

The general form to declare a one-dimensional array:

type[] array-name=new type[size];

Since arrays are implemented as objects, the creation of an array is a two-step process. First declare

an array reference variable. Second allocate memory for the array, assigning the reference to that

memory to the array. Thus arrays in java are dynamically allocated using new operator.

Eg : int[] sample=new int[10];

It is possible to break the above declaration.

int[] sample;

sample=new int[10];

// Demonstrate a one-dimensional array.
class ArrayDemo {

public static void main(String[] args) {

int[] sample = new int[10];

int i;

for(i = 0; i < 10; i = i+1)

sample[i] = i;

for(i = 0; i < 10; i = i+1)

System.out.println("This is sample[" + i + "]: " + sample[i]);

}

}

O/P:

This is sample[0]: 0 This is
sample[1]: 1 This is
sample[2]: 2 This is
sample[3]: 3 This is
sample[4]: 4 This is
sample[5]: 5 This is
sample[6]: 6 This is
sample[7]: 7 This is
sample[8]:8 This is
sample[9]:9

UNIT-I 28

JAVA PROGRAMMING

// Find the minimum and maximum values in an array.
class MinMax {

public static void main(String[] args) {

int[] nums = new int[10];

int min, max;

nums[0] = 99;

nums[1] = -10;

nums[2] = 100123;

nums[3] = 18;

nums[4] = -978;

nums[5] = 5623;

nums[6] = 463;

nums[7] = -9;

nums[8] = 287;

nums[9] = 49;

min = max = nums[0];

for(int i=1; i < 10; i++) {

if(nums[i] < min) min = nums[i];

if(nums[i] > max) max = nums[i];

}

System.out.println("min and max: " + min + " " + max);

}

}

// Use array initializers.
class MinMax2 {

public static void main(String[] args) {

int[] nums = { 99, -10, 100123, 18, -978, 5623, 463, -9, 287, 49 };

int min, max;

min = max = nums[0];

for(int i=1; i < 10; i++) {

if(nums[i] < min) min = nums[i];

if(nums[i] > max) max = nums[i];

}

System.out.println("Min and max: " + min + " " + max);

}

}

UNIT-I 29

JAVA PROGRAMMING

Multidimensional Arrays:
Two-dimensional arrays:

A two dimensional array is a list of one-dimensional array. A two dimensional array can be thought of as

creating a table of data organized by row and column. An individual item of data is accessed by specifying

its row and column position.

To declare a two dimensional array, we must specify two dimensions.

int[] [] table=new int[10] [20];

// Demonstrate a two-dimensional array.
class TwoD {

public static void main(String[] args) {
int t, i;
int[][] table = new int[3][4];
for(t=0; t < 3; ++t) {
for(i=0; i < 4; ++i) {
table[t][i] = (t*4)+i+1;

System.out.print(table[t][i] + " ");

}

System.out.println();

}

}

}

O/P:
1 2 3 4
5 6 7 8
9 10 11 12

Irregular arrays:
When allocating memory for multi dimensional arrays we need to specify only the memory for the first

dimension. We can allocate the remaining dimensions separately.

// Manually allocate differing size second dimensions. class

Ragged {

public static void main(String[] args) {

int[][] riders = new int[7][];

riders[0] = new int[10];

riders[1] = new int[10];

riders[2] = new int[10];

riders[3] = new int[10];

riders[4] = new int[10];

riders[5] = new int[2];

riders[6] = new int[2];

int i, j;

UNIT-I 30

JAVA PROGRAMMING

// fabricate some
data for(i=0; i < 5;
i++) for(j=0; j < 10;
j++)

riders[i][j] = i + j + 10;
for(i=5; i < 7; i++) for(j=0;
j < 2; j++)

riders[i][j] = i + j + 10;

System.out.println("Riders per trip during the week:");
for(i=0; i < 5; i++) {
for(j=0; j < 10; j++)
System.out.print(riders[i][j] + " ");
System.out.println();

}

System.out.println();

System.out.println("Riders per trip on the weekend:");
for(i=5; i < 7; i++) {

for(j=0; j < 2; j++)
System.out.print(riders[i][j] + " ");
System.out.println();

}

}

}

Initializing multi dimensional array:
A multidimensional array can be initialized by enclosing each dimension’s initialize list within its own

set of braces.

// Initialize a two-dimensional array.
class Squares {

public static void main(String[] args) {
int[][] sqrs = {

{ 1, 1 },

{ 2, 4 },

{ 3, 9 },

{ 4, 16 },

{ 5, 25 },

{ 6, 36 },

{ 7, 49 },

{ 8, 64 },

{ 9, 81 },

{ 10, 100 }

};

int i, j;

for(i=0; i < 10; i++) {

for(j=0; j < 2; j++)

System.out.print(sqrs[i][j] + " ");

System.out.println();

}

}

}

UNIT-I 31

JAVA PROGRAMMING

Using the length member:
Because arrays are implemented as objects, each array has associated with it a length instance variable

that contains the number of elements that the array can hold. In other words length contains the size of

the array.

// Use the length array member.
class LengthDemo {

public static void main(String[] args) {

int[] list = new int[10];

int[] nums = { 1, 2, 3 };

int[][] table = { // a variable-length table

{1, 2, 3},

{4, 5},

{6, 7, 8, 9}

};

System.out.println("length of list is " + list.length);

System.out.println("length of nums is " + nums.length);

System.out.println("length of table is " + table.length);

System.out.println("length of table[0] is " + table[0].length);

System.out.println("length of table[1] is " + table[1].length);

System.out.println("length of table[2] is " + table[2].length);

System.out.println();

// use length to initialize list

for(int i=0; i < list.length; i++)

list[i] = i * i;

System.out.print("Here is list: ");

// now use length to display list

for(int i=0; i < list.length; i++)

System.out.print(list[i] + " ");

System.out.println();

}

}

UNIT-I 32

JAVA PROGRAMMING

The for-each style for loop:
A for-each style loop is designed to cycle through a collection of objects, such as an array, in

strictly sequential fashion, from start to finish.

The for-each style of for is also referred to as the enhanced for

loop. The general form of the for-each version of the for is:

for(type itr-var: collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive

the elements from a collection, one at a time, from beginning to end. The collection being cycled

through is specified by collection.

Because the iteration variable receives values from the collection, type must be the same as (or

compatible with) the elements stored in the collection.

EG: compute the sum of the values in an array:

Int[] nums= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

The for-each style for automates the preceding loop. Specifically, it eliminates the need to establish

a loop counter, specify a starting and ending value, and manually index the array. Instead, it

automatically cycles through the entire array, obtaining one element at a time, in sequence, from

beginning to end. For example, here is the preceding fragment rewritten using a for-each version of

the for:

Int[] nums= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in

nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.

// Use a for-each style for loop.

class ForEach {

public static void main(String[] args) {

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

// Use for-each style for to display and sum the
values. for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;

}

System.out.println("Summation: " + sum);

}

}

UNIT-I 33

JAVA PROGRAMMING

There is one important point to understand about the for-each style loop. Its iteration variable is “read-only”

as it relates to the underlying array. An assignment to the iteration variable has no effect on the underlying

array.

// The for-each loop is essentially read-only.

class NoChange {

public static void main(String[] args) {

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x : nums) {

System.out.print(x + " ");

x = x * 10; // no effect on nums

}

System.out.println();

for(int x : nums)

System.out.print(x + " ");

System.out.println();

}

}

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays
The enhanced version of the for also works on multidimensional arrays.

// Use for-each style for on a two-dimensional array. class
ForEach2 {

public static void main(String[] args) {

int sum = 0;

int[][] nums = new int[3][5];

// give nums some values
for(int i = 0; i < 3; i++) for(int
j=0; j < 5; j++)

nums[i][j] = (i+1)*(j+1);

// Use for-each for loop to display and sum the values.
for(int[] x : nums) {
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;

}

}

System.out.println("Summation: " + sum);

}

}

UNIT-I 34

JAVA PROGRAMMING

O/P:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 2

Value is: 4

Value is: 6

Value is: 8

Value is: 10

Value is: 3

Value is: 6

Value is: 9

Value is: 12

Value is: 15

Summation: 90

// Search an array using for-each style
for. import java.util.Scanner;
public class Search {

public static void main(String[] args) {
int[] nums = { 6, 8, 3, 7, 5, 6, 1, 4 };

int val;
Scanner a=new Scanner(System.in);
System.out.println("Enter a number to search");

val=a.nextInt();

boolean found = false;
// Use for-each style for to search nums for val.

for(int x : nums)
{ if(x == val) {
found = true;
break;
}

}

if(found)
System.out.println("Value found!");

else
System.out.println("Value not found!");

}

}

O/P:
Enter a number to search 8

Value found!

Enter a number to search 10

Value not found!

UNIT-I 35

JAVA PROGRAMMING

STRINGS:
One of the most important data type in java is String. String defines and supports character

sting. In java strings are objects

Constructing strings:

String str= new String(“HELLO”);

This creates a String object called str that contains the character string “HELLO”.

A string can be constructed from another string

String str2= new String(str);

Another easy way to create a string is

String str=”Java strings are powerful”;

// Introduce String.
class StringDemo {

public static void main(String[] args) {

// declare strings in various ways

String str1 = new String("Java strings are objects.");

String str2 = "They are constructed various ways.";

String str3 = new String(str2);

System.out.println(str1);

System.out.println(str2);

System.out.println(str3);

}

}

Operating on strings:

The String class contains several methods that operate on strings.

boolean
equals(str)

Returns true if the invoking string contains the same character sequence
as str

int length() Returns the number of characters in the string

char charAt(index) Returns the character at the index specified by index

int compareTo(str) Returns less than zero if the invoking string is less than str, greater than
zero if

the the invoking string is greater than str, and zero if the strings are equal

int indexOf(str) Searches the invoking string for the substring specified by str. Returns
the index

of the first match or -1 on failure

int lastIndexOf(str) Searches the invoking string for the substring specified by str. Returns
the index

of the last match or -1 on failure

UNIT-I 36

JAVA PROGRAMMING

class StrOps {

// Some String operations.

public static void main(String[] args) {

String str1 = "When it comes to Web programming, Java is #1.";

String str2 = new String(str1);

String str3 = "Java strings are powerful.";

int result, idx;

char ch;

System.out.println("Length of str1: " + str1.length());

for(int i=0; i < str1.length(); i++) // display str1, one char at a

time. System.out.print(str1.charAt(i));

System.out.println();

if(str1.equals(str2))

System.out.println("str1 equals str2");

else

System.out.println("str1 does not equal str2");

if(str1.equals(str3))

System.out.println("str1 equals str3");

else

System.out.println("str1 does not equal str3");

result = str1.compareTo(str3);

if(result == 0)

System.out.println("str1 and str3 are equal");

else if(result < 0)

System.out.println("str1 is less than str3");

else

System.out.println("str1 is greater than str3");

// assign a new string to str2

str2 = "One Two Three One";

idx = str2.indexOf("One");

System.out.println("Index of first occurrence of One: " + idx);

idx = str2.lastIndexOf("One");

System.out.println("Index of last occurrence of One: " + idx);

}

}

UNIT-I 37

JAVA PROGRAMMING

Array of strings:

// Demonstrate String arrays. class

StringArrays {

public static void main(String[] args) {

String[] strs = { "This", "is", "a", "test." };

System.out.println("Original array: ");

for(String s : strs)

System.out.print(s + " ");

System.out.println("\n");

// change a string in the

array strs[1] = "was";

strs[3] = "test, too!";

System.out.println("Modified array: ");

for(String s : strs)

System.out.print(s + " ");

}

}

// Use substring(). class

SubStr {

public static void main(String[] args) {

String orgstr = "Java makes the Web move.";

// construct a substring

String substr = orgstr.substring(5, 18);

System.out.println("orgstr: " + orgstr);

System.out.println("substr: " + substr);

}

}

UNIT-I 38

JAVA PROGRAMMING

// Use a string to control a switch statement. class

StringSwitch {

public static void main(String[] args) {

String command = "cancel";

switch(command) {

case "connect": System.out.println("Connecting");

// ...

break;

case "cancel": System.out.println("Canceling");

// ...

break;

case "disconnect": System.out.println("Disconnecting");

// ...

break;

default: System.out.println("Command Error!");

break;

}

}

}

Using command line arguments:
// Display all command-line information. class

CLDemo {

public static void main(String[] args) {

System.out.println("There are " + args.length + " command-line arguments.");

System.out.println("They are: ");

for(int i=0; i<args.length; i++)

System.out.println("arg[" + i + "]: " + args[i]);

}

}

UNIT-I 39

JAVA PROGRAMMING

STRING HANDLING:
The String class is packaged in java.lang. Thus it is automatically available to all programs.

String objects can be constructed in a number of ways, making it easy to obtain a string when needed.

String Constructors:
// Demonstrate several String constructors.

class StringConsDemo {

public static void main(String[] args) {
char[] digits = new char[16];

// Create an array that contains the digits 0 through 9

// plus the hexadecimal values A through F.
for(int i=0; i < 16; i++) {

if(i < 10) digits[i] = (char) ('0'+i);

else digits[i] = (char) ('A' + i - 10);

}

// Create a string that contains all of the array.
String digitsStr = new String(digits);
System.out.println(digitsStr);
// Create a string the contains a portion of the array.
String nineToTwelve = new String(digits, 9, 4);
System.out.println(nineToTwelve);

// Construct a string from a string.

String digitsStr2 = new String(digitsStr);

System.out.println(digitsStr2);
// Now, create an empty string.
String empty = new String();
// This will display nothing:
System.out.println("Empty string: " + empty);

}

}

String Concatenation
In general, Java does not allow operators to be applied to String objects. The one exception to this rule

is the + operator, which concatenates two strings, producing a String object as the result.

String age = "9";

String s = "He is " + age + " years
old."; System.out.println (s);
This displays the string “He is 9 years old.”

String Concatenation with Other Data Types
You can concatenate strings with other types of data. For example, consider this slightly different version
of the earlier example:

int age = 9;
String s = "He is " + age + " years
old."; System.out.println (s);

In this case, age is an int rather than another String, but the output produced is the same as before. This
is because the int value in age is automatically converted into its string representation within a String

object.

UNIT-I 40

JAVA PROGRAMMING

// getChars()

One practical use of string concatenation is found when you are creating very long strings. Instead

of letting long strings wrap around within your source code, you can break them into smaller pieces,

using the + to concatenate them. Here is an example:

// Using concatenation to prevent long
lines. class ConCat {

public static void main(String args[]) {
String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";

System.out.println(longStr);

}

}

Character Extraction
The String class provides a number of ways in which characters can be extracted from a String

object

charAt()
To extract a single character from a String, you can refer directly to an individual character via the

charAt() method. It has this general form:
char charAt(int index)

// Demonstrate charAt() and length().
class CharAtAndLength {

public static void main(String[] args) {

String str = "Programming is both art and science.";

// Cycle through all characters in the string.
for(int i=0; i < str.length(); i++)
System.out.print(str.charAt(i) + " ");
System.out.println();

}

}

getChars()
If you need to extract more than one character at a time, you can use the getChars() method. It

has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

class GetCharsDemo {

public static void main(String[] args) {

String str = "Programming is both art and science.";
int start = 15;

int end = 23;

char[] buf = new char[end - start];
str.getChars(start, end, buf, 0);
System.out.println(buf);

}

}

UNIT-I 41

JAVA PROGRAMMING

String Comparison
The String class includes a number of methods that compare strings or substrings within strings.

equals() and equalsIgnoreCase()
To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns true if the strings

contain the same characters in the same order, and false otherwise.

The comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase().

When it compares two strings, it considers A-Z to be the same as a-z. It has this

general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns
true

if the strings contain the same characters in the same order, and false otherwise.

// Demonstrate equals() and equalsIgnoreCase().

class EqualityDemo {

public static void main(String[] args) {
String str1 = "table";

String str2 = "table";
String str3 = "chair";
String str4 = "TABLE";
if(str1.equals(str2))
System.out.println(str1 + " equals " + str2);

else

System.out.println(str1 + " does not equal " + str2);
if(str1.equals(str3))
System.out.println(str1 + " equals " + str3);

else

System.out.println(str1 + " does not equal " + str3);
if(str1.equals(str4))
System.out.println(str1 + " equals " + str4);

else
System.out.println(str1 + " does not equal " + str4);

if(str1.equalsIgnoreCase(str4))
System.out.println("Ignoring case differences, " + str1 +" equals " + str4);

else
System.out.println(str1 + " does not equal " + str4);

}

}

O/P:
table equals table

table does not equal chair

table does not equal TABLE

Ignoring case differences, table equals TABLE

UNIT-I 42

JAVA PROGRAMMING

equals() Versus = =
It is important to understand that the equals() method and the == operator perform two different operations.
The equals() method compares the characters inside a String object. The == operator compares two object
references to see whether they refer to the same instance.

// equals() vs = =

class EqualsNotEqualTo {

public static void main(String args[]) {
String s1 = "Hello";

String s2 = new String(s1);

System.out.println(s1 + " equals " + s2 + " −> " +

s1.equals(s2));

System.out.println(s1 + " == " + s2 + " −> " + (s1 == s2));

}

}

The variable s1 refers to the String instance created by “Hello”. The object referred to by s2 is created with
s1 as an initializer. Thus, the contents of the two String objects are identical, but they are distinct objects.
This means that s1 and s2 do not refer to the same objects and are, therefore, not = =, as is shown here by
the output of the preceding example:

Hello equals Hello −> true

Hello == Hello −> false

regionMatches()
The regionMatches() method compares a specific region inside a string with another specific region in

another string. Here are the general forms for two methods:

boolean regionMatches(int startIndex, String str2,

int str2StartIndex, int

numChars) boolean regionMatches(boolean

ignoreCase,

int startIndex, String str2,

int str2StartIndex, int numChars)

// Demonstrate

RegionMatches. class

CompareRegions {

public static void main(String[] args) {

String str1 = "Standing at river's edge.";

String str2 = "Running at river's edge.";

if(str1.regionMatches(9, str2, 8, 12))

System.out.println("Regions match.");

if(!str1.regionMatches(0, str2, 0, 12))

System.out.println("Regions do not match.");

}

}

O/P:

Regions match. Regions do

not match.

UNIT-I 43

JAVA PROGRAMMING

startsWith() and endsWith()
The startsWith() method determines whether a given String begins with a specified string. Conversely,

endsWith() determines whether the String in question ends with a specified string. They have the following

general forms:

boolean startsWith(String str)

boolean endsWith(String str)

A second form of startsWith(), shown here, lets you specify a starting

point: boolean startsWith(String str, int startIndex)

compareTo() and compareToIgnoreCase()
It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the comparison is

returned and is interpreted as shown here:

Value Meanin
g

Less than zero The invoking string is less than str
Greater than
zero

The invoking string is greater than
str

Zero The two strings are equal.

If you want to ignore case differences when comparing two strings, use

compareToIgnoreCase(), as shown here:

int compareToIgnoreCase(String str)

substring()
You can extract a substring using substring(). It has two forms. The first

is String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a copy of

the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending index of the

substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point

replace()
The replace() method has two forms. The first replaces all occurrences of one character in the

invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement. The

resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

UNIT-I 44

puts the string “Hewwo” into s.

The second form of replace() replaces one character sequence with another. It has this general

form:

String replace(CharSequence original, CharSequence replacement)

trim()
The trim() method returns a copy of the invoking string from which any leading and trailing

whitespace has been removed. It has this general form:

String trim()

Eg: String str=” gamma “;

After str=str.trim();

Str will contain only the string”gamma”

Changing the Case of Characters Within a String
The method toLowerCase() converts all the characters in a string from uppercase to lowercase. The

toUpperCase() method converts all the characters in a string from lowercase to uppercase.

Nonalphabetical characters, such as digits, are unaffected. Here are the simplest forms of these

methods:

String toLowerCase()
String toUpperCase()

// Demonstrate toUpperCase() and toLowerCase().
class ChangeCase {

public static void main(String[] args)

{

}

O/P:

String str = "This is a test.";
System.out.println("Original: " + str);
String upper = str.toUpperCase(); String
lower = str.toLowerCase();
System.out.println("Uppercase: " + upper);
System.out.println("Lowercase: " + lower);

}

Original: This is a test.

Uppercase: THIS IS A TEST.

Lowercase: this is a test.

String represents fixed-length, immutable character sequences.

In contrast, StringBuffer represents growable and writable character sequences. StringBuffer may

have characters and substrings inserted in the middle or appended to the end.

StringBuilder is identical to StringBuffer except for one important difference: it is not

synchronized, which means that it is not thread-safe. The advantage of StringBuilder is

faster performance.

46

JAVA UNIT-V Page 46

JAtfA PROGRAMMING

(AN UGC AUTONOMOUS INSTITUTION)

Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade Recognized Under
Section 2(f) of UGC Act 1956, ISO 9001:2015 Certified Vyasapuri, Bandlaguda, Post: Keshavgiri,

Hyderabad- 500 005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

 (R22)

 OOP through Java

Lecture Notes

 B. Tech II YEAR – I SEM

Prepared by

MOHD ANAS ALI
(Assistant Professor)

Dept. CSE(AIML)

http://www.mist.ac.in/
http://www.mist.ac.in/

JAtfA PROGRAMMING

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem. L T P C

 3 0 0 3

Course Objectives

● To Understand the basic object-oriented programming concepts and apply them
in problem solving.

● To Illustrate inheritance concepts for reusing the program.

● To Demonstrate multitasking by using multiple threads and event handling

● To Develop data-centric applications using JDBC.

● To Understand the basics of java console and GUI based programming Course
Outcomes

● Demonstrate the behavior of programs involving the basic programming
constructs like control structures, constructors, string handling and garbage
collection.

● Demonstrate the implementation of inheritance (multilevel, hierarchical and
multiple) by using extend and implement keywords

● Use multithreading concepts to develop inter process communication.

 ● Understand the process of graphical user interface design and implementation
using AWT or swings.

● Develop applets that interact abundantly with the client environment and deploy
on the server

UNIT - I Object oriented thinking and Java Basics- Need for oop paradigm,
summary of oop concepts, coping with complexity, abstraction mechanisms. A
way of viewing world – Agents, responsibility, messages, methods, History of
Java, Java buzzwords, data types, variables, scope and lifetime of variables,
arrays, operators, expressions, control statements, type conversion and casting,
simple java program, concepts of classes, objects, constructors, methods, access
control, this keyword, garbage collection, overloading methods and constructors,
method binding, inheritance, overriding and exceptions, parameter passing,
recursion, nested and inner classes, exploring string class.

 UNIT - II Inheritance, Packages and Interfaces – Hierarchical abstractions, Base
class object, subclass, subtype, substitutability, forms of inheritance
specialization, specification, construction, extension, limitation, combination,
benefits of inheritance, costs of inheritance. Member access rules, super uses,
using final with inheritance, polymorphism- method overriding, abstract classes,
the Object class. Defining, Creating and Accessing a Package, Understanding
CLASSPATH, importing packages, differences between classes and interfaces,
defining an interface, implementing interface, applying interfaces, variables in
interface and extending interfaces. Exploring java.io.

UNIT - III Exception handling and Multithreading-- Concepts of exception

JAtfA PROGRAMMING

handling, benefits of exception handling, Termination or resumptive models,
exception hierarchy, usage of try, catch, throw, throws and finally, built in
exceptions, creating own exception subclasses. String handling, Exploring
java.util. Differences between multithreading and multitasking, thread life cycle,
creating threads, thread priorities, synchronizing threads, inter thread
communication, thread groups, daemon threads. Enumerations, autoboxing,
annotations, generics.

UNIT - IV Event Handling: Events, Event sources, Event classes, Event Listeners,
Delegation event model, handling mouse and keyboard events, Adapter classes.
The AWT class hierarchy, user interface components- labels, button, canvas,
scrollbars, text components, check box, checkbox groups, choices, lists panels –
scrollpane, dialogs, menubar, graphics, layout manager – layout manager types –
border, grid, flow, card and grid bag.

UNIT - V Applets – Concepts of Applets, differences between applets and
applications, life cycle of an applet, types of applets, creating applets, passing
parameters to applets. Swing – Introduction, limitations of AWT, MVC
architecture, components, containers, exploring swing- JApplet, JFrame and
JComponent, Icons and Labels, text fields, buttons – The JButton class, Check
boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and
Tables.

JAtfA PROGRAMMING

UNIT II

Classes: Classes, Objects, Methods, Parameters, Constructors, Garbage Collection, Access
modifiers, Pass Objects and arguments, Method and Constructor Overloading,
Understanding static, Nested and inner classes.
Inheritance – Basics, Member Access, Usage of Super, Multi level hierarchy, Method
overriding, Abstract class, Final keyword.
Interfaces –Creating, Implementing, Using, Extending, and Nesting of interfaces.

Packages – Defining, Finding, Member Access, Importing.

1

CLASSES AND OBJECTS:
 A class is a template for an object, and an object is an instance of a class.

The General Form of a Class
 When a class is defined, its exact form and nature is declared by specifying the data that it contains and

the code that operates on that data.
 A class is declared by use of the class keyword.

class class-name{

// declare instance variables
type var1;
type var2;
//…….
type varN;
// declare methods
type method1(parameters){
//body of method
}
type method2(parameters){
//body of method
}
//…..
type methodN(parameters){
//body of method
}

}

JAtfA PROGRAMMING

 The data, or variables, defined within a class are called instance variables. The code is contained within
methods. Collectively, the methods and variables defined within a class are called members of the class.

 Each instance of the class (that is, each object of the class) contains its own copy of these variables

Defining a class:
class Vehicle {

int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}
class declaration is only a type description: it does not create an actual object To
actually create a Vehicle object, use a statement like the following

Vehicle minivan = new Vehicle(); // create a vehicle object called minivan
After this statement executes, minivan will be an instance of Vehicle. Thus, it will have “physical”

reality.
 Thus, every Vehicle object will contain its own copies of the instance variables passengers, fuelCap, mpg.

To access these variables, you will use the dot (.) operator. The dot operator links the name of the object
with the name of an instance variable.

object.member;
minivan.fuelcap=16;

JAtfA PROGRAMMING

/* A program that uses the Vehicle class.
Call this file VehicleDemo.java

*/
class Vehicle {

int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class VehicleDemo {

public static void main(String[] args) {
Vehicle minivan = new Vehicle();
int range;
// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelCap = 16;
minivan.mpg = 21;
// compute the range assuming a full tank of gas
range = minivan.fuelCap * minivan.mpg;
System.out.println("Minivan can carry " + minivan.passengers +

“with a range of " + range);
}

}
 When this program is compiled, two .class files have been created. The Java compiler automatically

puts each class into its own .class file.
 To run this program we must run VehicleDemo.class.

// This program creates two Vehicle objects.

class Vehicle {
int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class TwoVehicles {

public static void main(String[] args) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelCap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelCap = 14;
sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas
range1 = minivan.fuelCap * minivan.mpg;
range2 = sportscar.fuelCap * sportscar.mpg;
System.out.println("Minivan can carry " + minivan.passengers + " with a range of " + range1);
System.out.println("Sportscar can carry " + sportscar.passengers +" with a range of " + range2);

JAtfA PROGRAMMING

}
}

JAtfA PROGRAMMING

passengers

fuelcap

mpg

NULL

car1

When you assign one object reference variable to another object reference variable, you are not
creating a copy of the object, you are only making a copy of the reference.

DECLARING OBJECTS
 Obtaining objects of a class is a two-step process.
 First, you must declare a variable of the class type. This variable does not define an object. Instead, it is

simply a variable that can refer to an object.
 Second, you must acquire an actual, physical copy of the object and assign it to that variable. This can

be done by using the new operator.
 The new operator dynamically allocates (that is, allocates at run time) memory for an object and returns

a reference to it.
 This reference is, more or less, the address in memory of the object allocated by new.

Vehicle minivan; // declare reference to object

minivan
minivan = new Vehicle(); // allocate a Vehicle object

minivan
Vehicle object

REFERENCE VARIABLES AND ASSIGNMENTS
 Object reference variables act differently when an assignment takes place.
 Consider the following fragment:

Vehicle car1= new Vehicle();
Vehicle car2= car1;

car2
After this fragment executes, car1 and car2 will both refer to the same object. The assignment of car1
to car2 did not allocate any memory or copy any part of the original object. It simply makes car2 refer
to the same object as does car1. Thus, any changes made to the object through car2 will affect the
object to which car1 is referring, since they are the same object.
car1.mpg=26;
 When the following statements are executed display the same value 26

System.out.println(car1.mpg);

System.out.println(car2.mpg);

 Although car1 and car2 both refer to the same object, they are not linked in any other way. Vehicle
car1= new Vehicle();

Vehicle car2= car1;
Vehicle car3= new Vehicle();
car2=car3;

 After this statement executes car2 refers to the same object as car3. The object referred to by

car1 is exchanged.

passengers

fuelcap

mpg

JAtfA PROGRAMMING

Methods
 A method contains the statements that define its actions. This

is the general form of a method:
type name(parameter-list) {

// body of method
}
 Here, type specifies the type of data returned by the method. This can be any valid type, including class

types that you create. If the method does not return a value, its return type must be void.
 The parameter-list is a sequence of type and identifier pairs separated by commas. Parameters are

essentially variables that receive the value of the arguments passed to the method when it is called. If the
method has no parameters, then the parameter list will be empty.

Adding a Method to the Vehicle Class
 Most of the time, methods are used to access the instance variables defined by the class. In fact, methods

define the interface to most classes. This allows the class implementer to hide the specific layout of internal
data structures behind cleaner method abstractions.

// Add range to Vehicle.
class Vehicle {

int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
// Display the range.
void range() {

System.out.println("Range is " + fuelCap * mpg);
}

}

class AddMeth {
public static void main(String[] args) {

Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelCap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelCap = 14;
sportscar.mpg = 12;
System.out.print("Minivan can carry " + minivan.passengers + ". ");
minivan.range(); // display range of minivan
System.out.print("Sportscar can carry " + sportscar.passengers + ". ");
sportscar.range(); // display range of sportscar.

}
}

 When a method is called, program control is transferred to the method. When the method terminates,
control is transferred back to the caller, and execution resumes with the line of code following the call.

 When a method uses an instance variable that is defined by its class, it does so directly, without explicit
reference to an object and without use of the dot operator.

Returning from a method:
In general, two conditions can cause a method to return- first, when the method’s closing brace is
encountered. The second is when a return statement is executed. There are two forms of return – one
for use in void methods and one for returning values.

JAtfA PROGRAMMING

Returning a value:
 Methods that have a return type other than void return a value to the calling routine using the following

form of the return statement:
return value;

Here, value is the value returned.
// Use a return value.
class Vehicle {

int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
// Return the range.
int range() {

return mpg * fuelCap;
}

}
class RetMeth {

public static void main(String[] args) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int range1, range2;
// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelCap = 16;
minivan.mpg = 21;
// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelCap = 14;
sportscar.mpg = 12;
// get the ranges
range1 = minivan.range();
range2 =
sportscar.range();
System.out.println("Minivan can carry " + minivan.passengers +“with range of " + range1 + " miles");
System.out.println("Sportscar can carry " + sportscar.passengers + “with range of "+range2 + " miles");

}
}

Using parameters:
 It is possible to pass one or more values to a method when the method is called.
 Parameters allow a method to be generalized. That is, a parameterized method can operate on a variety

of data and/or be used in a number of slightly different situations.
 There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type specified by the method.
For example, if the return type of some method is boolean, you could not return an integer.
• The variable receiving the value returned by a method must also be compatible with the return type
specified for the method.

// A simple example that uses a parameter.
class ChkNum {

// Return true if x is even.
boolean isEven(int x) {
if((x% 2) == 0) returntrue;
else return false;
}

}
class ParmDemo {

public static void main(String[] args) {
ChkNum e = new ChkNum();
if(e.isEven(10)) System.out.println("10 is
even."); if(e.isEven(9)) System.out.println("9 is
even."); if(e.isEven(8)) System.out.println("8 is
even.");

JAtfA PROGRAMMING

}
}

JAtfA PROGRAMMING

A method can have more than one parameter. Simply declare each parameter, separating one
from the next with a comma.
class Factor {

// Return true if a is a factor of b.
boolean isFactor(int a, int b) {

if((b % a) == 0) return true;
else return false;

}
}
class IsFact {

public static void main(String[] args) {
Factor x = new Factor();
if(x.isFactor(2, 20)) System.out.println("2 is factor");
if(x.isFactor(3, 20)) System.out.println("this won't be displayed");

}
}

Adding a parameterized method to Vehicle:
/*

Add a parameterized method that computes the fuel required for a given distance.
*/
class Vehicle {

int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
// Return the range.
int range() {

return mpg * fuelCap;
}

// Compute fuel needed for a given distance.
double fuelNeeded(int miles) {

return (double) miles / mpg;
}

}
class CompFuel {

public static void main(String[] args) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
double gallons;
int dist = 252;
// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelCap = 16;
minivan.mpg = 21;
// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelCap = 14;
sportscar.mpg = 12;
gallons = minivan.fuelNeeded(dist);
System.out.println("To go " + dist + " miles minivan needs " + gallons + " gallons of fuel.");
gallons = sportscar.fuelNeeded(dist);
System.out.println("To go " + dist + " miles sportscar needs " + gallons + " gallons of fuel.");

}
}

JAtfA PROGRAMMING

CONSTRUCTORS:
 Java allows objects to initialize themselves when they are created. This automatic initialization is

performed through the use of a constructor.

 A constructor initializes an object immediately upon creation. It has the same name as the class in which
it resides and is syntactically similar to a method. Once defined, the constructor is automatically called
immediately after the object is created, before the new operator completes.

// A simple constructor.
class MyClass

{ int x;
MyClass() {

x = 10;
}

}
class ConsDemo {

public static void main(String[] args) {
MyClass t1 = new MyClass();
MyClass t2 = new MyClass();
System.out.println(t1.x + " " + t2.x);

}
}

Parameterized Constructors
 Parameters are added to a constructor in the same way that they are added to a method: just declare

them inside the parenthesis after the constructor’s name.

// A parameterized constructor.
class MyClass {

int x;
MyClass(int i) {
x = i;
}

}
class ParmConsDemo {

public static void main(String[] args) {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);
System.out.println(t1.x + " " + t2.x);

}
}

Adding a Constructor to a Vehicle calss
// Add a constructor.
class Vehicle {

int passengers; // number of passengers
int fuelCap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
// This is a constructor for Vehicle.
Vehicle(int p, int f, int m) {
passengers =

p; fuelCap = f;
mpg = m;

}
// Return the range.
int range() {

return mpg * fuelCap;
}
// Compute fuel needed for a given distance.
double fuelNeeded(int miles) {

return (double) miles / mpg;
}

JAtfA PROGRAMMING

}

JAtfA PROGRAMMING

class VehConsDemo {

public static void main(String[] args) {

// construct complete vehicles

Vehicle minivan = new Vehicle(7, 16, 21);

Vehicle sportscar = new Vehicle(2, 14,

12); double gallons;

int dist = 252;

gallons = minivan.fuelNeeded(dist);

System.out.println("To go " + dist + " miles minivan needs " +

gallons + " gallons of fuel.");

gallons = sportscar.fuelNeeded(dist);

System.out.println("To go " + dist + " miles sportscar needs " +

gallons + " gallons of fuel.");

}

}

The this Keyword

 Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines the this

keyword.

 this can be used inside any method to refer to the current object. That is, this is always a reference to
the object on which the method was invoked.

class MyClass {
int x;
MyClass(int i) {

this.x = i;
}

}
class ConsDemo {

public static void main(String[] args) {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);
System.out.println(t1.x + " " + t2.x);

}
}

Output of the above code is 10 88
 this has some important uses. For example java syntax permits the name of a parameter or a local variable

to be the same of an instance variable. When this happens, the local name hides the instance variable.
The hidden instance variable can gain access by referring to it through this.

class MyClass {
int x;
MyClass(int x) {

x = x;
}

}
class ConsDemo {

public static void main(String[] args) {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);
System.out.println(t1.x + " " + t2.x);

}
}

Output is 0 0

JAtfA PROGRAMMING

If we use this key word we can gain access to the hidden instance variables
class MyClass {

int x;
MyClass(int x) {

this.x = x;
}

}

class ConsDemo {

public static void main(String[] args) {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);
System.out.println(t1.x + " " + t2.x);

}
}

O/P is 10 88

new OPERATOR REVISITED

 When you allocate an object, you use the following general form:

class-var = new classname ();

 Now you can understand why the parentheses are needed after the class name. What is actually

happening is that the constructor for the class is being called.

 When you do not explicitly define a constructor for a class, then Java creates a default constructor for the

class.

 The default constructor automatically initializes all instance variables to zero. The default constructor is

often sufficient for simple classes, but it usually won’t do for more sophisticated ones.

 Once you define your own constructor, the default constructor is no longer used.

Garbage Collection

 Since objects are dynamically allocated by using the new operator, you might be wondering how such

objects are destroyed and their memory released for later reallocation. In some languages, such as C++,

dynamically allocated objects must be manually released by use of a delete operator.

 Java takes a different approach; it handles deallocation automatically. The technique that accomplishes

this is called garbage collection.

 When no references to an object exist, that object is assumed to be no longer needed, and the memory

occupied by the object can be reclaimed.

 Garbage collection only occurs sporadically (if at all) during the execution of your program. It will not occur

simply because one or more objects exist that are no longer used.

The finalize() Method

 Sometimes an object will need to perform some action when it is destroyed.

 To handle such situations, Java provides a mechanism called finalization. By using finalization, you can

define specific actions that will occur when an object is just about to be reclaimed by the garbage collector.

 To add a finalizer to a class, you simply define the finalize() method. The Java run time calls that method

whenever it is about to recycle an object of that class. Inside the finalize() method, you will specify those

actions that must be performed before an object is destroyed.

 The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

 Here, the keyword protected is a specifier that prevents access to finalize() by code defined outside its

class.

JAtfA PROGRAMMING

Access Modifiers:

 Encapsulation links data with the code that manipulates it. However, encapsulation provides another

important attribute: access control

 How a member can be accessed is determined by the access modifier attached to its declaration. Java

supplies a rich set of access modifiers.

 Java’s access modifiers are public, private, and protected. Java also defines a default access level.

protected applies only when inheritance is involved.

 When a member of a class is modified by public, then that member can be accessed by any other code.

When a member of a class is specified as private, then that member can only be accessed by other

members of its class.

 When no access modifier is used, then by default the member of a class is public within its own package,

but cannot be accessed outside of its package.

 An access modifier precedes the rest of a member’s type specification. That is, it must begin a member’s

declaration statement. Here is an example:

public int i;

private double j;

private int myMethod(int a, char b) { //…

 To understand the effects of public and private access, consider the following program:

/* This program demonstrates the difference between public and private. */

class Test {

int a; // default access public

int b; // public access

private int c; // private access

// methods to access c

void setc(int i) { // set c's value

c = i;

}

int getc() { // get c's value

return c;

}

}

class AccessTest {

public static void main(String args[]) {

Test ob = new Test();

// These are OK, a and b may be accessed directly

ob.a = 10;

ob.b = 20;

// This is not OK and will cause an error

// ob.c = 100; // Error!

// You must access c through its methods

ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " " +ob.b + " " + ob.getc());

}

}

JAtfA PROGRAMMING

Pass objects to methods:

 It is possible to pass objects to a methods

// Objects can be passed to methods.

class Block {

int a, b, c;

int volume;

Block(int i, int j, int k) {

a = i;

b = j;

c = k;

volume = a * b * c;

}

// Return true if ob defines same block.

boolean sameBlock(Block ob) {

if((ob.a == a) & (ob.b == b) & (ob.c == c)) return

true; else return false;

}

// Return true if ob has same volume.

boolean sameVolume(Block ob) {

if(ob.volume == volume) return true;

else return false;

}

}

class PassOb {

public static void main(String[] args) {

Block ob1 = new Block(10, 2, 5);

Block ob2 = new Block(10, 2, 5);

Block ob3 = new Block(4, 5, 5);

System.out.println("ob1 same dimensions as ob2: " + ob1.sameBlock(ob2));

System.out.println("ob1 same dimensions as ob3: " + ob1.sameBlock(ob3));

System.out.println("ob1 same volume as ob3: " + ob1.sameVolume(ob3));

}

}

JAtfA PROGRAMMING

How Arguments are passed:

 There are two ways to pass an argument to a subroutine.

 The first way is call-by-value. This approach copies the value of an argument into the formal parameter of

the subroutine. Therefore, changes made to the parameter of the subroutine have no effect on the

argument.

 The second way an argument can be passed is call-by-reference. In this approach, a reference to an

argument (not the value of the argument) is passed to the parameter. Inside the subroutine, this reference

is used to access the actual argument specified in the call. This means that changes made to the

parameter will affect the argument used to call the subroutine.

 When you pass a primitive type to a method, it is passed by value.

// Primitive types are passed by value.

class Test {

/* This method causes no change to the arguments

used in the call. */

void noChange(int i, int j) {

i = i + j;

j = -j;

}

}

class CallByValue {

public static void main(String[] args) {

Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " + a + " " + b);

ob.noChange(a, b);

System.out.println("a and b after call: " + a + " " + b);

}

}

 When you pass an object to a method, objects are passed by call-by-reference.

// Objects are passed through their references.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

/* Pass an object. Now, ob.a and ob.b in object

used in the call will be changed. */

void change(Test ob)

{ ob.a = ob.a + ob.b;

ob.b = -ob.b;

}

}

class PassObjRef {

public static void main(String[] args) {

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " + ob.a + " " + ob.b);

ob.change(ob);

System.out.println("ob.a and ob.b after call: " + ob.a + " " + ob.b);

}

}

JAtfA PROGRAMMING

Returning objects:
 A method can return any type of data, including class types that you create.

// Return a String object.
class ErrorMsg {

String[] msgs = { "Output Error", "Input Error", "Disk Full", "Index Out-Of-Bounds"};
// Return the error message.
String getErrorMsg(int i) {
if(i >=0 & i < msgs.length)

return msgs[i];
else

return "Invalid Error Code";
}

}
class ErrMsgDemo {

public static void main(String[] args) {
ErrorMsg err = new ErrorMsg();
System.out.println(err.getErrorMsg(2));
System.out.println(err.getErrorMsg(19));

}
}
O/P:
Disk Full
Invalid Error Code

 We can also return objects of classes that we create.

// Return a programmer-defined object. class
Err {

String msg; // error message
int severity; // code indicating severity of error
Err(String m, int s) {
msg = m;
severity = s;

}
}

class ErrorInfo {
String[] msgs = {
"Output Error",
"Input Error",
"Disk Full",

"Index Out-Of-Bounds"
};
int[] howbad = { 3, 3, 2, 4 };
Err getErrorInfo(int i) {
if(i >= 0 & i < msgs.length)

return new Err(msgs[i], howbad[i]);
else

return new Err("Invalid Error Code", 0);
}

}
class ErrInfoDemo {

public static void main(String[] args) {
ErrorInfo err = new ErrorInfo();
Err e;
e = err.getErrorInfo(2);
System.out.println(e.msg + " severity: " + e.severity);
e = err.getErrorInfo(19);
System.out.println(e.msg + " severity: " + e.severity);

}

JAtfA PROGRAMMING

}

JAtfA PROGRAMMING

METHOD OVERLOADING:
 In Java it is possible to define two or more methods within the same class that share the same name, as

long as their parameter declarations are different. When this is the case, the methods are said to be
overloaded, and the process is referred to as method overloading.

 Method overloading is one of the ways that Java supports polymorphism.
 Overloaded methods must differ in the type and/or number of their parameters.
 While overloaded methods may have different return types, the return type alone is insufficient to

distinguish two versions of a method.

 When Java encounters a call to an overloaded method, it simply executes the version of the method
whose parameters match the arguments used in the call.

// Demonstrate method overloading. class

Overload {

void ovlDemo() {

System.out.println("No parameters");

}

// Overload ovlDemo for one integer parameter.

void ovlDemo(int a) {

System.out.println("One parameter: " + a);

}

// Overload ovlDemo for two integer parameters.

int ovlDemo(int a, int b) {

System.out.println("Two parameters: " + a + " " + b);

return a + b;

}

// Overload ovlDemo for two double parameters.

double ovlDemo(double a, double b) {

System.out.println("Two double parameters: " + a + " " + b);

return a + b;

}

}

class OverloadDemo {

public static void main(String[] args) {

Overload ob = new Overload();

int resI;

double resD;

// call all versions of ovlDemo()

ob.ovlDemo();

System.out.println();

ob.ovlDemo(2);

System.out.println();

resI = ob.ovlDemo(4, 6);

System.out.println("Result of ob.ovlDemo(4, 6): "

+resI); System.out.println();

resD = ob.ovlDemo(1.1, 2.32);

System.out.println("Result of ob.ovlDemo(1.1, 2.32): " +

resD);

}

}

O/P:

No parameters One
parameter: 2
Two parameters: 4 6
Result of ob.ovlDemo(4, 6): 10
Two double parameters: 1.1 2.32

JAtfA PROGRAMMING

Result of ob.ovlDemo(1.1, 2.32): 3.42

JAtfA PROGRAMMING

 The difference in their return types is insufficient for the purpose of overloading.

// one ovlDemo(int a) is ok
void ovlDemo(int a) {

System.out.println("One parameter: " + a);
}
// Error. two ovlDemo(int a) are not ok even though their return types are different
int ovlDemo(int a) {

System.out.println("One parameter: " + a);
return a *a;

}

 Java provides certain automatic type conversions. These conversions also apply to parameters of
overloaded methods. For example consider the following:

/* Automatic type conversions can affect overloaded method resolution. */
class Overload2

{ void f(int x) {

System.out.println("Inside f(int): " + x);
}

void f(double x) {

System.out.println("Inside f(double): " + x);
}

}

class TypeConv {
public static void main(String[] args) {

Overload2 ob = new Overload2();
int i = 10;
double d = 10.1;

byte b = 99;
short s = 10;
float f = 11.5F;

ob.f(i); // calls ob.f(int)
ob.f(d); // calls ob.f(double)

ob.f(b); // calls ob.f(int) - type conversion
ob.f(s); // calls ob.f(int) - type conversion
ob.f(f); // calls ob.f(double) - type conversion

}
}

O/P
Inside f(int) : 10
Inside f(double) : 10.1
Inside f(int) : 99
Inside f(int) : 10
Inside f(double) : 11.5

In the case of byte and short java automatically converts them to int. In the case of float the value
is converted to double and f(double) is called.

The automatic type conversions apply only if there is no direct match between a parameter and an
argument.

JAtfA PROGRAMMING

OVERLOADING CONSTRUCTORS:
 Like methods constructors can also be overloaded. This allows to construct objects in a variety of ways.

// Demonstrate an overloaded constructor.
class

MyClass{ int
x; MyClass()
{

System.out.println("Inside MyClass().");

x = 0;
}
MyClass(int i) {

System.out.println("Inside MyClass(int).");

x = i;
}
MyClass(double d) {

System.out.println("Inside MyClass(double).");
x = (int) d;

}
MyClass(int i, int j) { System.out.println("Inside

MyClass(int, int)."); x = i * j;
}

}
class OverloadConsDemo {

public static void main(String[] args) {
MyClass t1 = new MyClass();
MyClass t2 = new MyClass(88);
MyClass t3 = new MyClass(17.23);
MyClass t4 = new MyClass(2, 4);
System.out.println("t1.x: " + t1.x);
System.out.println("t2.x: " + t2.x);
System.out.println("t3.x: " + t3.x);
System.out.println("t4.x: " + t4.x);

O/P:

Inside MyClass(). Inside
MyClass(int).
Inside MyClass(double).
Inside MyClass(int, int). t1.x: 0
t2.x: 88
t3.x: 17
t4.x: 8

}

}

// Initialize one object with another.

class Summation {
int sum;
// Construct from an int.
Summation(int num) {
sum = 0;

for(int i=1; i <= num; i++)
sum += i;

}
// Construct from another object.
Summation(Summation ob) {
sum = ob.sum;
}

}
class SumDemo {

public static void main(String[] args) {
Summation s1 = new Summation(5);
Summation s2 = new Summation(s1);
System.out.println("s1.sum: " + s1.sum);
System.out.println("s2.sum: " + s2.sum);

}
}
O/P:

JAtfA PROGRAMMING

s1.sum: 15
s2.sum: 15

JAtfA PROGRAMMING

UNDERSTANDING static:
 Normally, a class member must be accessed only in conjunction with an object of its class. However, it is

possible to create a member that can be used by itself, without reference to a specific instance.

 To create such a member, precede its declaration with the keyword static.

 When a member is declared static, it can be accessed before any objects of its class are created, and

without reference to any object.

 You can declare both methods and variables to be static. The most common example of a static member
is main(). main() is declared as static because it must be called before any objects exist.

static variables:
 Instance variables declared as static are, essentially, global variables. When objects of its class are

declared, no copy of a static variable is made. Instead, all instances of the class share the same static
variable.

// Use a static variable.

class StaticDemo {

int x; // a normal instance variable

static int y; // a static variable

// Return the sum of the instance variable x and the static variable y.

int sum() {

return x + y;

}

}

class SDemo {

public static void main(String[] args) {

StaticDemo ob1 = new StaticDemo();

StaticDemo ob2 = new StaticDemo();

// Each object has its own copy of an instance variable.

ob1.x = 10;

ob2.x = 20;

System.out.println("ob1.x: " + ob1.x + "\nob2.x: " + ob2.x);

System.out.println();

StaticDemo.y = 19;

System.out.println("ob1.sum(): " + ob1.sum());

System.out.println("ob2.sum(): " + ob2.sum());

System.out.println();

StaticDemo.y = 100;

System.out.println("ob1.sum(): " + ob1.sum());

System.out.println("ob2.sum(): " + ob2.sum());

System.out.println();

}

}

O/P:

ob1.x: 10

ob2.x: 20

ob1.sum(): 29

ob2.sum(): 39

ob1.sum(): 110

ob2.sum(): 120

JAtfA PROGRAMMING

static Methods:
 Methods declared static are, essentially, global methods. They are called independently of any object.

Instead a static method is called through its class name.
 Methods declared as static have several restrictions:

• They can only directly call other static methods.

• They can only directly access static data.

• They cannot refer to this or super in any way.

// Use a static method. class

StaticMeth {

static int val = 1024; // a static variable

// A static method.

static int valDiv2() {

return val/2;

}

}

class SDemo2 {

public static void main(String[] args) {

System.out.println("val is " + StaticMeth.val);

System.out.println("StaticMeth.valDiv2(): " +StaticMeth.valDiv2());

StaticMeth.val = 4;

System.out.println("val is " + StaticMeth.val);

System.out.println("StaticMeth.valDiv2(): " + StaticMeth.valDiv2());

}

}
O/P:

val is 1024

StaticMeth.valDiv2(): 512

val is 4

StaticMeth.valDiv2(): 2

static Blocks:
 A static block is executed when the class is first loaded. Thus, it is executed before the class can be

used for any other purpose.

// Use a static block

class StaticBlock { static

double rootOf2; static

double rootOf3;

static {

System.out.println("Inside static block.");

rootOf2 = Math.sqrt(2.0);

rootOf3 = Math.sqrt(3.0);

}

StaticBlock(String msg) {

System.out.println(msg);

}

}

class SDemo3 {

public static void main(String[] args) {

StaticBlock ob = new StaticBlock("Inside Constructor");

System.out.println("Square root of 2 is " +StaticBlock.rootOf2);

System.out.println("Square root of 3 is " +StaticBlock.rootOf3);

}

O/P:
Inside static block.
Inside Constructor
Square root of 2 is 1.4142135623730951
Square root of 3 is 1.7320508075688772

JAtfA PROGRAMMING

}

JAtfA PROGRAMMING

NESTED AND INNER CLASSES:
 It is possible to define a class within another class; such classes are known as nested classes. The scope

of a nested class is bounded by the scope of its enclosing class. Thus, if class B is defined within class A,

then B does not exist independently of A.

 A nested class has access to the members, including private members, of the class in which it is nested.

However, the enclosing class does not have access to the members of the nested class.

 A nested class that is declared directly within its enclosing class scope is a member of its enclosing class.
It is also possible to declare a nested class that is local to a block.

 There are two types of nested classes: static and non-static.

 A static nested class is one that has the static modifier applied. Because it is static, it must access the
non-static members of its enclosing class through an object. That is, it cannot refer to non-static members
of its enclosing class directly.

 The most important type of nested class is the inner class. An inner class is a non-static nested class.

// Use an inner class. class
Outer {

int[] nums;

Outer(int[] n) {

nums = n;
}
void analyze() {

Inner inOb = new Inner();
System.out.println("Minimum: " + inOb.min());
System.out.println("Maximum: " + inOb.max());
System.out.println("Average: " + inOb.avg());

}
// This is an inner class.
class Inner {

// Return the minimum value.
int min() {

int m = nums[0];
for(int i=1; i < nums.length; i++)

if(nums[i] < m) m = nums[i];
return m;

}
// Return the maximum value.
int max() {

int m = nums[0];
for(int i=1; i < nums.length; i++)

if(nums[i] > m) m = nums[i];
return m;

}
// Return the average.
int avg() {

int a = 0;
for(int i=0; i < nums.length; i++)

a += nums[i];
return a / nums.length;

}
}

}
class NestedClassDemo {

public static void main(String[] args) {
int[] x = { 3, 2, 1, 5, 6, 9, 7, 8 };
Outer outOb = new Outer(x);

outOb.analyze();
}

}

O/P:
Minimum: 1
Maximum: 9
Average: 5

JAtfA PROGRAMMING

INHERITANCE:

Basics:
 Java supports inheritance by allowing one class to incorporate another class into its declaration. This is

done by using extends keyword.
 In java a class that is inherited is called a superclass. The class that does the inheriting is called a

subclass.
 The general form of a class declaration that inherits a superclass is shown here: class

subclass-name extends superclass-name {

// body of class

}
 We can only specify one superclass for any subclass that we create. Java does not support the inheritance

of multiple superclasses into a single subclass.
 A major advantage of inheritance is that once we had created a superclass that defines the atteibutes

common to a set of objects, it can be used to create any number of more specific subclasses.
 The following program creates a superclass called TwoDShape and subclass called Triangle

// A class for two-dimensional objects. class

TwoDShape {

double width;

double height;

void showDim()

{

System.out.println("Width and height are " + width + " and " + height);

}

}

// A subclass of TwoDShape for triangles.

class Triangle extends TwoDShape

{ String style;

double area() {

return width * height / 2;

}

void showStyle() {

System.out.println("Triangle is " + style);

}

}

class Shapes {

public static void main(String[] args) {

Triangle t1 = new Triangle();

Triangle t2 = new

Triangle(); t1.width = 4.0;

t1.height = 4.0;

t1.style = "filled";

t2.width = 8.0;

t2.height = 12.0;

t2.style = "outlined";

System.out.println("Info for t1: ");

t1.showStyle();

t1.showDim();

System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");

t2.showStyle();

t2.showDim();

System.out.println("Area is " + t2.area());

O/P:
Info for t1:
Triangle is filled
Width and height are 4.0 and 4.0
Area is 8.0

Info for t2:
Triangle is outlined
Width and height are 8.0 and 12.0

JAtfA PROGRAMMING

}

}

JAtfA PROGRAMMING

MEMBER ACCESS AND INHERITANCE:
 Inheriting a class does not overrule the private access restriction. Thus even though a subclass includes

all of the members of its superclass, it cannot access those members of the superclass that have been
declared as private.

// Private members of a superclass are not accessible by a subclass.
// This example will not compile.
// A class for two-dimensional objects. class
TwoDShape {

private double width; // these are
private double height; // now private
void showDim() {

System.out.println("Width and height are " + width + " and " + height);
}

}
// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

double area()
{

return width * height / 2; // Error! can't access
}
void showStyle() {

System.out.println("Triangle is " + style);
}

}
 The Triangle class will not compile because the reference to width and height inside the area() method

causes an access violation. Since width and height are declared private in TwoDShape, they are
accessible only by the other members of TwoDShape.

 To access private members of superclass we can use accessor methods.

USAGE OF super:
 Both the superclass and subclass have their own constructors.
 Constructors for the superclass construct the superclass portion of the object, and the constructor for the

subclass constructs the subclass part.
 When both the superclass and the subclass define constructors, the process is a bit complicated because

both the superclass and subclass constructors must be executed. In this case we need to use super
keyword.

 super has two general forms. The first calls the superclass constructor. The second is used to access a
member of the superclass that has been hidden by a member of a subclass.

Using super to Call Superclass Constructors

 A subclass can call a constructor defined by its superclass by use of the following form of

super:

super(arg-list);

 super() must always be the first statement executed inside a subclass constructor.

// Add constructors to TwoDShape.

class TwoDShape {
private double width;
private double height;
// Parameterized constructor.
TwoDShape(double w, double h)
{

width = w; height = h;
}
// Accessor methods for width and height.
double getWidth() { return width; }

JAtfA PROGRAMMING

double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h;
}

JAtfA PROGRAMMING

void showDim() {
System.out.println("Width and height are " + width + " and " + height);

}
}
// A subclass of TwoDShape for triangles. class
Triangle extends TwoDShape {

private String style;
Triangle(String s, double w, double h) {

super(w, h); // call superclass constructor
style = s;

}
double area() {

return getWidth() * getHeight() / 2;
}
void showStyle() {

System.out.println("Triangle is " + style);
}

}
class Shapes4 {

public static void main(String[] args) {
Triangle t1 = new Triangle("filled", 4.0, 4.0);
Triangle t2 = new Triangle("outlined", 8.0, 12.0);
System.out.println("Info for t1: "); t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());
System.out.println();
System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

}
}

Using super to Access Superclass Members:
 The second form of super acts somewhat like this, except that it always refers to the superclass of the

subclass in which it is used. This usage has the following general form:

super. member

 Here, member can be either a method or an instance variable

// Using super to overcome name hiding.
class A

{ int i;
}
// Create a subclass by extending class A. class
B extends A {

int i; // this i hides the i in A
B(int a, int b) {

super.i = a; // i in A i
= b; // i in B

}
void show() {

System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}
class UseSuper {

public static void main(String[] args) {
B subOb = new B(1, 2);
subOb.show();

}

JAtfA PROGRAMMING

}

JAtfA PROGRAMMING

Creating a Multilevel Hierarchy
 We can build hierarchies that contain as many layers of inheritance. It is perfectly acceptable to use a

subclass as a superclass of another.

 For example, given three classes called A, B, and C, C can be a subclass of B, which is a subclass of A.

When this type of situation occurs, each subclass inherits all of the traits found in all of its superclasses.

In this case, C inherits all aspects of B and A.

 To see how a multilevel hierarchy can be useful, consider the following program.

// A multilevel hierarchy. class
TwoDShape {

private double width;
private double height;
// A default constructor.
TwoDShape() {

width = height = 0.0;
}
// Parameterized constructor.
TwoDShape(double w, double h)
{

width = w;
height = h;

}
// Construct object with equal width and height.
TwoDShape(double x) {

width = height = x;
}
// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h;
} void showDim() {

System.out.println("Width and height are " +
width + " and " + height);

}
}
// Extend TwoDShape.

class Triangle extends TwoDShape
{ private String style;
// A default constructor.
Triangle() {

super();
style = "none";

}
Triangle(String s, double w, double h) {

super(w, h); // call superclass constructor
style = s;

}
// One argument constructor.
Triangle(double x) {

super(x); // call superclass constructor
// default style to filled
style = "filled";

}
double area() {

return getWidth() * getHeight() / 2;
}
void showStyle() {

JAtfA PROGRAMMING

System.out.println("Triangle is " + style);
}

}

JAtfA PROGRAMMING

// Extend Triangle.
class ColorTriangle extends Triangle

{ private String color;
ColorTriangle(String c, String s, double w, double h) {

super(s, w, h);
color = c;

}
String getColor() { return color; }
void showColor() {

System.out.println("Color is " + color);
}

}
class Shapes6 {

public static void main(String[] args) {
ColorTriangle t1 =new ColorTriangle("Blue", "outlined", 8.0, 12.0);
ColorTriangle t2 =new ColorTriangle("Red", "filled", 2.0, 2.0);
System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
t1.showColor();
System.out.println("Area is " + t1.area());
System.out.println();
System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
t2.showColor();
System.out.println("Area is " + t2.area());

}
}

When Constructors Are Called

 When a class hierarchy is created, in what order are the constructors for the classes that make up the

hierarchy called?

 In a class hierarchy, constructors are called in order of derivation, from superclass to subclass.

 Further, since super() must be the first statement executed in a subclass’ constructor, this order is the

same whether or not super() is used. If super() is not used, then the default or parameterless constructor

of each superclass will be executed.

 The following program illustrates when constructors are executed:

// Demonstrate when constructors are executed. class

A {
A() {

System.out.println("Constructing A.");
}

}
class B extends A

{ B() {
System.out.println("Constructing B.");

}
}

class C extends B
{ C() {

System.out.println("Constructing C.");
}

}
class OrderOfConstruction {

public static void main(String[] args) {
C c = new C();

}

JAtfA PROGRAMMING

}

JAtfA PROGRAMMING

Superclass references and subclass objects:

 A reference variable for one class type cannot normally refer to an object of another class type.

// This will not compile. class
X {

int a;
X(int i) { a = i; }

}
class Y

{ int a;
Y(int i) { a = i; }

}
class IncompatibleRef {

public static void main(String[] args) {
X x = new X(10);
X x2;
Y y = new Y(5);
x2 = x; // OK, both of same type
x2 = y; // Error, not of same type

}
}

 A reference variable of a superclass can be assigned a reference to an object of any subclass derived
from that superclass.

// A superclass reference can refer to a subclass object. class
X {

int a;
X(int i) { a = i; }

}
class Y extends X

{ int b;
Y(int i, int j) {

super(j);
b = i;

}
}
class SupSubRef {

public static void main(String[] args) {
X x = new X(10);
X x2;
Y y = new Y(5, 6);

x2 = x; // OK, both of same type
System.out.println("x2.a: " + x2.a);
x2 = y; // still OK because y is derived from X
System.out.println("x2.a: " + x2.a);
// X references know only about X members

x2.a = 19; // OK
// x2.b = 27; // Error, X doesn't have a b member
}

}

 When a reference to a subclass object is assigned to a superclass reference variable we can only
access to those parts of the objet defined by the superclass.

 When constructors are called in a class hierarchy, subclass references can be assigned to a superclass
variable.

JAtfA PROGRAMMING

METHOD OVERRIDING:
 In a class hierarchy, when a method in a subclass has the same name and type signature as a method in

its superclass, then the method in the subclass is said to override the method in the superclass.
 When an overridden method is called from within its subclass, it will always refer to the version of that

method defined by the subclass. The version of the method defined by the superclass will be hidden.
 Consider the following:

class A1{

int i, j;

A1(int a, int b) {

i = a;

j = b;

}

// display i and j

void show(){

System.out.println("i and j: " + i + " " + j);

}

}

class B1 extends A1 {

int k;

B1(int a, int b, int c) {

super(a,

b); k = c;

}

// display k - this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class MetOver{

public static void main(String[] args) {

B1 subOb = new B1(1,2,3);

subOb.show(); // this calls show() in B

}

}
O/P:

k: 3

 When show() is invoked on an object of type B, the version of show() defined within B is used.

 If you wish to access the superclass version of an overridden method, you can do so by using

super.

class B extends A
{ int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
void show() {

super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}
O/P:
i and j: 1 2
k: 3

JAtfA PROGRAMMING

 Method overriding occurs only when the names and the type signatures of the two methods are identical.
If they are not, then the two methods are simply overloaded. For example, consider this modified version
of the preceding example:

/* Methods with differing signatures are overloaded and not overridden. */ class A
{

int i, j;
A(int a, int b) {

i = a;
j = b;

}
// display i and j
void show() {

System.out.println("i and j: " + i + " " + j);
}

}
// Create a subclass by extending class A. class
B extends A {

int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
// overload show() void
show(String msg) {
System.out.println(msg + k);
}

}
class Overload {

public static void main(String[] args) {
B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}
O/P:

this is k: 3 i and

j: 1 2

DYNAMIC METHOD DISPATCH:
 Method overriding forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.

Dynamic method dispatch is the mechanism by which a call to an overridden method is resolved at run
time, rather than compile time. Dynamic method dispatch is important because this is how Java
implements run-time polymorphism.

 When an overridden method is called through a superclass reference, Java determines which version of

that method to execute based upon the type of the object being referred to at the time the call occurs.

Thus, this determination is made at run time.

 When different types of objects are referred to, different versions of an overridden method will be called.
In other words, it is the type of the object being referred to (not the type of the reference variable) that
determines which version of an overridden method will be executed.

// Demonstrate dynamic method dispatch.

class Sup {

void who() {

System.out.println("who() in Sup");

}

}

class Sub1 extends Sup {

void who() {

System.out.println("who() in Sub1");

}

JAtfA PROGRAMMING

}

JAtfA PROGRAMMING

class Sub2 extends Sup {

void who() {

System.out.println("who() in Sub2");

}

}

class DynDispDemo {

public static void main(String[] args) {

Sup superOb = new Sup();

Sub1 subOb1 = new Sub1();

Sub2 subOb2 = new Sub2();

Sup supRef;

supRef =

superOb;

supRef.who();

supRef = subOb1;

supRef.who();

supRef = subOb2;

supRef.who();

}

}

O/P:

who() in Sup who()

in Sub1 who() in

Sub2

Why Overridden Methods?

 Polymorphism is essential to object-oriented programming for one reason: it allows a general class to
specify methods that will be common to all of its derivatives, while allowing subclasses to define the
specific implementation of some or all of those methods. Overridden methods are another way that Java
implements the “one interface, multiple methods” aspect of polymorphism.

 Dynamic, run-time polymorphism is one of the most powerful mechanisms that object oriented design
brings to bear on code reuse and robustness. The ability of existing code libraries to call methods on
instances of new classes without recompiling while maintaining a clean abstract interface is a profoundly
powerful tool.

USING ABSTRACT CLASSES:
 A class which contains the abstract keyword in its declaration is known as abstract class.

 Abstract classes may or may not contain abstract methods ie., methods without body (public
void get();)

 But, if a class has at least one abstract method, then the class must be declared abstract.

 If a class is declared abstract it cannot be instantiated.
 To use an abstract class you have to inherit it from another class, provide implementations to the

abstract methods in it.
 If you inherit an abstract class you have to provide implementations to all the abstract methods in it.

Abstract Methods:
 If you want a class to contain a particular method but you want the actual implementation of that method

to be determined by child classes, you can declare the method in the parent class as abstract.
 abstract keyword is used to declare the method as abstract.
 You have to place the abstract keyword before the method name in the method declaration.
 An abstract method contains a method signature, but no method body.
 Instead of curly braces an abstract method will have a semi colon (;) at the end.

JAtfA PROGRAMMING

// A Simple demonstration of abstract.
abstract class A {

abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {

System.out.println("This is a concrete method.");
}

}
class B extends A {

void callme() {
System.out.println("B's implementation of callme.");

}
}
class AbstractDemo {

public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo()
;

}
}

Using final
 To prevent a method from being overridden or a class from being inherited by using the keyword final.

final prevents overriding:
 To disallow a method from being overridden, specify final as a modifier at the start of its declaration.

Methods declared as final cannot be overridden. The following fragment illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");

}
}
class B extends A {

void meth() { // ERROR! Can't override.
System.out.println("Illegal!");

}
}

Using final to Prevent Inheritance
 To prevent a class from being inherited, precede the class declaration with final.

 Declaring a class as final implicitly declares all of its methods as final, too.

 It is illegal to declare a class as both abstract and final since an abstract class is incomplete by itself
and relies upon its subclasses to provide complete implementations.

final class A {
// ...

}
// The following class is illegal.
class B extends A { // ERROR! Can't subclass A

// ...
}

final with data members:
 final can also be applied to member variables . If a class variable’s name precede with final, its value

cannot be changed throughout the lifetime of the program.

JAtfA PROGRAMMING

INTERFACES:
 Using the keyword interface, you can fully abstract a class’ interface from its implementation.
 Java Interface also represents IS-A relationship.

 Interfaces are syntactically similar to classes, but they lack instance variables, and their methods are
declared without any body.

 Once it is defined, any number of classes can implement an interface. Also, one class can implement
any number of interfaces.

 To implement an interface, a class must create the complete set of methods defined by the interface.
 By providing the interface keyword, Java allows you to fully utilize the “one interface, multiple methods”

aspect of polymorphism.
 Interfaces are designed to support dynamic method resolution at run time.
 Defining an Interface
 An interface is defied much like a class. This is a simplified general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);

//…
return-type method-nameN(parameter-list);

}
 The java compiler adds public and abstract keywords before the interface method and public, static and

final keywords before data members.
 An interface is different from a class in several ways, including:

 You cannot instantiate an interface.

 An interface does not contain any constructors.

 All of the methods in an interface are abstract.

 An interface cannot contain instance fields. The only fields that can appear in an interface must be
declared both static and final.

 An interface is not extended by a class; it is implemented by a class.

 An interface can extend multiple interfaces.

Implementing Interfaces

 Once an interface has been defined, one or more classes can implement that interface. To implement an

interface, include the implements clause in a class definition, and then create the methods defined by the

interface. The general form is:

class classname extends superclass implements interface {

// class-body

}

 If a class implements more than one interface, the interfaces are separated with a comma. If a class
implements two interfaces that declare the same method, then the same method will be used by clients of
either interface. The methods that implement an interface must be declared public.

 Differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have abstract and non-
abstractmethods.

Interface can have only abstract methods.

2) Abstract class doesn't support multiple inheritance. Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static and non-
static variables.

Interface has only static and final variables.

4) Abstract class can have static methods, main
method and constructor.

Interface can't have static methods, main
method or constructor.

5) Abstract class can provide the implementation of
interface.

Interface can't provide the implementation of
abstract class.

6) The abstract keyword is used to declare abstract
class.

The interface keyword is used to declare interface.

7) Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

JAtfA PROGRAMMING

 Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface achieves fully
abstraction (100%).

Understanding relationship between classes and interfaces
 As shown in the figure given below, a class extends another class, an interface extends another

interface but a class implements an interface.

public interface Series {
int getNext(); // return next number in series

void reset(); // restart
void setStart(int x); // set starting value

}
// Implement Series.
class ByTwos implements Series {

int start;
int val;
ByTwos()
{

start = 0;
val = 0;

}
// Implement the methods specified by Series.
public int getNext()

{ val += 2;
return val;

}
public void reset()

{ val = start;
}
public void setStart(int x) {

start = x;
val = x;

}
}
class SeriesDemo {

public static void main(String[] args) {
ByTwos ob = new ByTwos();
for(int i=0; i < 5; i++)

System.out.println("Next value is " +
ob.getNext()); System.out.println("\nResetting");

ob.reset();
for(int i=0; i < 5; i++)

System.out.println("Next value is " +
ob.getNext()); System.out.println("\nStarting at

100"); ob.setStart(100);
for(int i=0; i < 5; i++)

System.out.println("Next value is " + ob.getNext());
}

}
O/P:
Next value is 2 Next
value is 4 Next value
is 6 Next value is 8

JAtfA PROGRAMMING

Next value is 10

JAtfA PROGRAMMING

Resetting
Next value is 2 Next
value is 4 Next value
is 6 Next value is 8
Next value is 10

Starting at 100
Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

 The classes that implement an interface not only limited to those methods in an interface. The class can

provide whatever additional functionality is desired.
 Any number of classes can implement an interface.

// Implement Series a different way.
class ByThrees implements Series {
int start; int

val;
ByThrees()
{

start = 0;
val = 0;

}
// Implement the methods specified by Series.
public int getNext() {

val += 3;
return val;

}
public void reset() {

val = start;
}
public void setStart(int x) {

start = x;
val = x;

}
}

Using interface reference:
 An interface declaration creates a new reference type. When a class implements an interface, it is

adding that interface’s type to its type.
 Interface reference variable can refer to any object that implements the interface.

class SeriesDemo2 {

public static void main(String[] args) {
ByTwos twoOb = new ByTwos();
ByThrees threeOb = new
ByThrees();

Series iRef; // an interface reference

for(int i=0; i < 5; i++) {
iRef = twoOb; // refers to a ByTwos object
System.out.println("Next ByTwos value is " + iRef.getNext());
iRef = threeOb; // refers to a ByThrees object
System.out.println("Next ByThrees value is " +
iRef.getNext());

JAtfA PROGRAMMING

}
}

}

JAtfA PROGRAMMING

Implementing multiple interfaces:
 A class can implement more than one interface.
 Multiple inheritance is not supported in case of class. But it is supported in case of interface because

there is no ambiguity as implementation is provided by the implementation class.

interface IfA {
void doSomething();

}
interface IfB {

void doSomethingElse();
}
// Implement both IfA and IfB. class
MyClass implements IfA, IfB {
public void doSomething() {

System.out.println("Doing something.");

}
public void doSomethingElse() {

System.out.println("Doing something else.");
}

}

 If a class implements two interfaces that declare the same method, then the same method implementation
will be used for both interfaces. This means that only one version of the method os defined by the class.

// Both IfA and IfB declare the method doSomething().
interface IfA {

void doSomething();
}
interface IfB {

void doSomething();
}
// Implement both IfA and IfB class
MyClass implements IfA, IfB {

// This method implements both IfA and IfB.
public void doSomething() {
System.out.println("Doing something.");
}

}
class MultiImpDemo {

public static void main(String[] args) {
IfA aRef;
IfB bRef;
MyClass obj = new MyClass();

// Both interfaces use the same doSomething().
aRef = obj;
aRef.doSomething()
; bRef = obj;
bRef.doSomething()
;

}
}

Constants in Interfaces:
 The primary purpose of an interface is to declare methods that provide a well defined interface to

functionality. An interface can also include variables, but these are not instance variables instead they are
implicitly public, final, static and must be initialized.

 To define a set of shared constants, simply create an interface that contains only those constants without
any methods. Each class that needs to access the constants simply “implements” the interface.

JAtfA PROGRAMMING

// An interface that contains constants.
interface IConst {

int MIN = 0;
int MAX = 10;
String ERRORMSG = "Boundary Error";

}
// Gain access to the constants by implementing IConst. class
IConstDemo implements IConst {

public static void main(String[] args) {
int[] nums = new int[MAX];
for(int i=MIN; i < (MAX + 1); i++)
{

if(i >= MAX)
System.out.println(ERRORMSG); else
{

nums[i] = i;
System.out.print(nums[i] + " ");

}
}

}
}

INTERFACES CAN BE EXTENDED:
 One interface can inherit another by use of the keyword extends. The syntax is the same as for

inheriting classes.

 When a class implements an interface that inherits another interface, it must provide implementations for
all methods defined within the interface inheritance chain.

// One interface can extend another.
interface A {

void meth1();
void meth2();

}
// B inherits meth1() and meth2() - it adds meth3().
interface B extends A {

void meth3();
}
// This class must implement all of A and B. class
MyClass implements B {

public void meth1() {
System.out.println("Implement meth1().");

}
public void meth2() {

System.out.println("Implement meth2().");
}
public void meth3() {

System.out.println("Implement meth3().");
}

}
class IFExtend {

public static void main(String[] args) {
MyClass ob = new MyClass();
ob.meth1();
ob.meth2();
ob.meth3();

}
}
O/P:
Implement meth1().

JAtfA PROGRAMMING

Implement meth2().

Implement meth3().

JAtfA PROGRAMMING

Nested Interfaces
 An interface can be declared a member of a class or another interface. Such an interface is called a

member interface or a nested interface.
 A nested interface can be declared as public, private, or protected. This differs from a top- level interface,

which must either be declared as public or use the default access level.
 When a nested interface is used outside of its enclosing scope, it must be qualified by the name of the

class or interface of which it is a member. Thus, outside of the class or interface in which a nested interface
is declared, its name must be fully qualified.

// A nested interface example.
// This interface contains a nested interface.
interface A {

// this is a nested interface
public interface NestedIF {
boolean isNotNegative(int x);
}
void doSomething();

}

// This class implements the nested interface.
class B implements A.NestedIF {

public boolean isNotNegative(int x)
{ return x < 0 ? false: true;

}
}
class NestedIFDemo {

public static void main(String[] args) {
// use a nested interface reference
A.NestedIF nif = new B();
if(nif.isNotNegative(10))

System.out.println("10 is not negative");
if(nif.isNotNegative(-12))

System.out.println("this won't be displayed");
}

}

JAtfA PROGRAMMING

PACKAGE
 A java package is a group of similar types of classes, interfaces and sub-packages.
 Package in java can be categorized in two form, built-in package and user-defined package.
 There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Advantage of Java Package
1) Java package is used to categorize the classes and interfaces so that they can be easily
maintained.
2) Java package provides access protection.
3) Java package removes naming collision.

Defining a Package:

 To create a package is quite easy: simply include a package command as the first statement in a Java
source file. Any classes declared within that file will belong to the specified package. The package
statement defines a name space in which classes are stored. If you omit the package statement, the class
names are put into the default package, which has no name.

 This is the general form of the package statement:

package pkg;

 Here, pkg is the name of the package. For example, the following statement creates a package called

MyPackage:

package MyPackage;
 More than one file can include the same package statement. The package statement simply specifies to

which package the classes defined in a file belong.

 You can create a hierarchy of packages. To do so, simply separate each package name from the one

above it by use of a period. The general form of a multileveled package statement is shown here:

package pkg1[.pkg2[.pkg3]];
 A package hierarchy must be reflected in the file system of your Java development system.

For example, a package declared

as package java.awt.image;

Finding Packages and CLASSPATH
 The Java run-time system looks for packages in three ways.

 First, by default, the Java run-time system uses the current working directory as its starting point. Thus,

if your package is in a subdirectory of the current directory, it will be found.

 Second, you can specify a directory path or paths by setting the CLASSPATH environmental variable.

 Third, you can use the -classpath option with java and javac to specify the path to your classes.
 When the second two options are used, the class path must not include MyPack, itself. It must simply

specify the path to MyPack. For example, in a Windows environment, if the path to MyPack is

C:\MyPrograms\Java\MyPack

 Then the class path to MyPack is
C:\MyPrograms\Java

JAtfA PROGRAMMING

 A simple package example.
 Save the following file as A.java in a folder called pack.

package pack;

public class A {

public void msg()

{

System.out.println("Hello");}

}
 Save the following file as B.java in a folder called mypack.

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

}

}
 Assume that pack and mypack folders are in the directory E:/java.
 compile:

E:/java>javac mypack/B.java
Running:
E:/java>java mypack/B Hello

PACKAGES AND MEMBER ACCESS:
 Java provides many levels of protection to allow fine-grained control over the visibility of variables and

methods within classes, subclasses, and packages.
 Classes and packages are both means of encapsulating and containing the name space and scope of

variables and methods.

 Packages act as containers for classes and other subordinate packages. Classes act as containers for

data and code.

 The class is Java’s smallest unit of abstraction.

 Because of the interplay between classes and packages, Java addresses four categories of visibility for

class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

CLASS MEMBER ACCESS

 Private
Member

Default
Member

Protected
Member

Public
Member

Visible within same class YES YES YES YES

Visible within same
package by subclass

NO YES YES YES

Visible within same
package by non-subclass

NO YES YES YES

Visible within different
package by subclass

NO NO YES YES

Visible within different
by non-subclass

NO NO NO YES

JAtfA PROGRAMMING

A package access example:

The following is saved as Protection.java in package p1
package p1;
public class Protection {

int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;
public Protection() {

System.out.println("base constructor");
System.out.println("n = " + n);
System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

Derived.java in package p1
package p1;

class Derived extends Protection
{ Derived() {

System.out.println("derived constructor");
System.out.println("n = " + n);
// class only
// System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

SamePackage.java in package
p1 package p1;
class SamePackage {

SamePackage() {
Protection p = new Protection();
System.out.println("same package constructor");
System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);
System.out.println("n_pro = " + p.n_pro);
System.out.println("n_pub = " + p.n_pub);

}
}

Protection2.java in package p2
package p2;
class Protection2 extends p1.Protection {

Protection2() {
System.out.println("derived other package constructor");
// class or package only
// System.out.println("n = " + n);
// class only
// System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

JAtfA PROGRAMMING

OtherPackage.java in package
p2 package p2;

class OtherPackage {
OtherPackage() {

p1.Protection p = new p1.Protection();
System.out.println("other package constructor");
// class or package only
// System.out.println("n = " + p.n);
// class only
// System.out.println("n_pri = " + p.n_pri);
// class, subclass or package only

// System.out.println("n_pro = " + p.n_pro);
System.out.println("n_pub = " + p.n_pub);

}
}

// Demo package p1.
package p1;
// Instantiate the various classes in p1.
public class Demo {

public static void main(String args[]) {
Protection ob1 = new Protection();
Derived ob2 = new Derived();
SamePackage ob3 = new
SamePackage();

}
}

// Demo package p2.
package p2;
// Instantiate the various classes in p2.
public class Demo {

public static void main(String args[]) {
Protection2 ob1 = new Protection2();
OtherPackage ob2 = new

OtherPackage();
}

}

O/P for Demo in p1
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived constructor
n = 1
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
same

packag
e constructor
n = 1

n_pro = 3

JAtfA PROGRAMMING

O/P for Demo in p2
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived other package constructor
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
other package constructor

n_pub = 4

JAtfA PROGRAMMING

IMPORTING
PACKAGES:

 Java includes the import statement to bring certain classes, or entire packages, into visibility.
 Once imported, a class can be referred to directly, using only its name.
 In a Java source file, import statements occur immediately following the package statement (if it exists)

and before any class definitions.

 This is the general form of the import statement:

import pkg1 .pkg2.classname | *;

 Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate package inside the
outer package separated by a dot (.).

Eg: import mypack.MyClass;
import mypack.*;

 * indicates that the Java compiler should import the entire package.
 All of the standard Java classes included with Java are stored in a package called java. The basic

language functions are stored in a package inside of the java package called java.lang.
 It must be emphasized that the import statement is optional. Any place you use a class name, you can

use its fully qualified name, which includes its full package hierarchy. For example, this fragment uses an

import statement:

import java.util.*;

class MyDate extends Date {

}

 The same example without the import statement looks like this: class

MyDate extends java.util.Date {

}

JAVA’S Standard packages:

Sub package Description

java.lang Contains a large number of general –purpose classes

java.io Contains the I/O classes

java.net Contains those classes that support networking

java.applet Contains classes for creating applets

java.awt Contains classes that support the Abstract Window Toolkit

java.util Contains various utility classes, plus the Collections Framework

STATIC IMPORT:
 Java includes a feature called static import that expands the capabilities of the import keyword. By

following import with the keyword static, an import statement can be used to import the static members of

a class or interface.

 When using static import, it is possible to refer to static members directly by their names, without having
to qualify them with the name of their class.

// Compute the hypotenuse of a right triangle. import

java.lang.Math.sqrt;

import java.lang.Math.pow;

class Hypot {

public static void main(String args[]) {

double side1, side2;

double hypot;

side1 = 3.0;

side2 = 4.0;

// Notice how sqrt() and pow() must be qualified by

// their class name, which is Math.

hypot = Math.sqrt(Math.pow(side1, 2) +Math.pow(side2, 2));

System.out.println("Given sides of lengths " +side1 + " and "

+ side2 +" the hypotenuse is " +hypot);

}

JAtfA PROGRAMMING

}

Given sides of lengths 3.0 and 4.0 the hypotenuse is 5.0

 Because pow() and sqrt() are static methods, they must be called through the use of their class’ name, Math. This

results in a somewhat unwieldy hypotenuse calculation:

hypot = Math.sqrt(Math.pow(side1, 2) + Math.pow(side2, 2));

 We can eliminate the tedium of specifying the class name through the use of static import, as shown in the following
version of the preceding program:

// Compute the hypotenuse of a right triangle.

import static java.lang.Math.sqrt; import static

java.lang.Math.pow; class Hypot {

public static void main(String args[]) {

double side1, side2;

double hypot; side1 = 3.0;

side2 = 4.0;

// Notice how sqrt() and pow() must be qualified by

// their class name, which is Math.

hypot = sqrt(pow(side1, 2) +pow(side2, 2)); System.out.println("Given

sides of lengths " +side1 + " and "

+ side2 +" the hypotenuse is " +hypot);

}

}
 The second form of static import imports all static members of a given class or interface. Its general form is shown

here:

import static pkg.type-name.*;
 One other point: in addition to importing the static members of classes and interfaces defined by the Java API, you

can also use static import to import the static members of classes and interfaces that you create.

64

JAVA UNIT-V Page 64

(AN UGC AUTONOMOUS INSTITUTION)

Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade Recognized Under Section
2(f) of UGC Act 1956, ISO 9001:2015 Certified Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500

005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

 (R22)

 OOP through Java

Lecture Notes

 B. Tech II YEAR – I SEM

Prepared by

MOHD ANAS ALI
(Assistant Professor)

Dept. CSE(AIML)

http://www.mist.ac.in/
http://www.mist.ac.in/

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem. L T P C

 3 0 0 3

Course Objectives

● To Understand the basic object-oriented programming concepts and apply them in
problem solving.

● To Illustrate inheritance concepts for reusing the program.

● To Demonstrate multitasking by using multiple threads and event handling

● To Develop data-centric applications using JDBC.

● To Understand the basics of java console and GUI based programming Course
Outcomes

● Demonstrate the behavior of programs involving the basic programming constructs like
control structures, constructors, string handling and garbage collection.

● Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by
using extend and implement keywords

● Use multithreading concepts to develop inter process communication.

 ● Understand the process of graphical user interface design and implementation using
AWT or swings.

● Develop applets that interact abundantly with the client environment and deploy on the
server

UNIT - I Object oriented thinking and Java Basics- Need for oop paradigm, summary of
oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world –
Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types,
variables, scope and lifetime of variables, arrays, operators, expressions, control
statements, type conversion and casting, simple java program, concepts of classes,
objects, constructors, methods, access control, this keyword, garbage collection,
overloading methods and constructors, method binding, inheritance, overriding and
exceptions, parameter passing, recursion, nested and inner classes, exploring string
class.

 UNIT - II Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class
object, subclass, subtype, substitutability, forms of inheritance specialization,
specification, construction, extension, limitation, combination, benefits of inheritance,
costs of inheritance. Member access rules, super uses, using final with inheritance,
polymorphism- method overriding, abstract classes, the Object class. Defining, Creating
and Accessing a Package, Understanding CLASSPATH, importing packages, differences
between classes and interfaces, defining an interface, implementing interface, applying
interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III Exception handling and Multithreading-- Concepts of exception handling,
benefits of exception handling, Termination or resumptive models, exception hierarchy,
usage of try, catch, throw, throws and finally, built in exceptions, creating own exception
subclasses. String handling, Exploring java.util. Differences between multithreading and
multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads,
inter thread communication, thread groups, daemon threads. Enumerations, autoboxing,
annotations, generics.

UNIT - IV Event Handling: Events, Event sources, Event classes, Event Listeners,
Delegation event model, handling mouse and keyboard events, Adapter classes. The
AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text
components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs,
menubar, graphics, layout manager – layout manager types – border, grid, flow, card and
grid bag.

UNIT - V Applets – Concepts of Applets, differences between applets and applications, life
cycle of an applet, types of applets, creating applets, passing parameters to applets.
Swing – Introduction, limitations of AWT, MVC architecture, components, containers,
exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons
– The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll
Panes, Trees, and Tables.

Object Oriented Programming using JAVA

UNIT I

UNIT-I 1

UNIT I

Introduction to Java: The key attributes of object oriented programming,

Simple program, The Java keywords, Identifiers, Data types and

operators, Program control statements, Arrays, Strings, String Handling

Introduction:
 JAVA is a programming language.

 Computer language innovation and development occurs for two fundamental reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

 Java is related to C++, which is a direct descendant of C. Much of the character of Java

is inherited from these two languages. From C, Java derives its syntax. Many of Java’s

object- oriented features were influenced by C++.

 Definition: Object-oriented programming (OOP) is a programming methodology that

helps organize complex programs through the use of inheritance, encapsulation, and

polymorphism.

 Java was developed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank,

and Mike Sheridan at Sun Microsystems, Inc. in 1991. This language was initially called

“Oak,” but was renamed “Java” in 1995.

 Java was not designed to replace C++. Java was designed to solve a certain set of

problems. C++ was designed to solve a different set of problems.

 Java contribution to internet:

Java programming had a profound effect on internet.

 Java Applets
An applet is a special kind of Java program that is designed to be transmitted over the Internet

and automatically executed by a Java-compatible web browser.

 Security
Every time you download a “normal” program, you are taking a risk, because the code you are

downloading might contain a virus, Trojan horse, or other harmful code.

In order for Java to enable applets to be downloaded and executed on the client computer

safely, it was necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment and not

allowing it access to other parts of the computer.

UNIT-I 2

JAVA PROGRAMMING

 Portability
Portability is a major aspect of the Internet because there are many different types of computers

and operating systems connected to it. Java programming provide portability

Byte code:

The output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly

optimized set of instructions designed to be executed by the Java run-time system, which is

called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an

interpreter for bytecode.

 Servlets: Java on the Server Side
A servlet is a small program that executes on the server. Just as applets dynamically extend the

functionality of a web browser, servlets dynamically extend the functionality of a web server.

 The Java Buzzwords
o Simple

o Secure
o Portable
o Object-oriented
o Robust
o Multithreaded
o Architecture-neutral
o Interpreted
o High performance
o Distributed

o Dynamic

 Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at

least some extent object-oriented.

Two Paradigms
All computer programs consist of two elements: code and data. Furthermore, a program can be

conceptually organized around its code or around its data.

Some programs are written around “what is happening” and others are written around “who is

being affected.” These are the two paradigms that govern how a program is constructed.

The first way is called the process-oriented model. The process-oriented model can be

thought of as code acting on data. Procedural languages such as C employ this model

to considerable success.

Object-oriented programming organizes a program around its data (that is, objects) and a set of

well-defined interfaces to that data. An object oriented program can be characterized as data

controlling access to code.

UNIT-I 3

JAVA PROGRAMMING

The key Attributes of OOP:
All object-oriented programming languages provide mechanisms that help you implement the

object-oriented model. They are encapsulation, inheritance, and polymorphism.

Encapsulation
 Encapsulation is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse.

 In Java, the basis of encapsulation is the class.

 A class defines the structure and behavior (data and code) that will be shared by a set

of objects. Each object of a given class contains the structure and behavior defined by

the class. Objects are sometimes referred to as instances of a class.

 Thus, a class is a logical construct; an object has physical reality.

 The code and data that constitute a class are called members of the class. Specifically,

the data defined by the class are referred to as member variables or instance variables.

The code that operates on that data is referred to as member methods or just methods

 Each method or variable in a class may be marked private or public. The public interface

of a class represents everything that external users of the class need to know, or may

know. The private methods and data can only be accessed by code that is a member of

the class

Inheritance
 Inheritance is the process by which one object acquires the properties of another

object. This is important because it supports the concept of hierarchical classification.

 Inheritance interacts with encapsulation as well. If a given class encapsulates some

attributes, then any subclass will have the same attributes plus any that it adds as part

of its specialization

 A new subclass inherits all of the attributes of all of its ancestors.

Polymorphism
 Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface

to be used for a general class of actions.

 More generally, the concept of polymorphism is often expressed by the phrase “one

interface, multiple methods.” This means that it is possible to design a generic interface

to a group of related activities. This helps reduce complexity by allowing the same

interface to be used to specify a general class of action.

UNIT-I 4

JAVA PROGRAMMING

A First Simple Program

/*

This is a simple Java program.

Call this file Example.java.

*/

class Example {

// A Java program begins with a call to main().

public static void main(String[] args) {

System.out.println("Java drives the Web.");

}

}

Entering the program:

The first step in creating a program is to enter its source code into the computer.

The name you give to a source file is very important. In Java, a source file is officially called a compilation
unit. It is a text file that contains (among other things) one or more class definitions. The Java compiler
requires that a source file use the .java filename extension

The name of the main class should match the name of the file that holds the program.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the source file on
the command line, as shown here:

| javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of the program.
The output of javac is not code that can be directly executed.

Running the program

To actually run the program, you must use the Java application launcher called java.

To do so, pass the class name Example as a command-line argument, as shown here:

| java Example

When the program is run, the following output is displayed:

| Java drives the Web.

UNIT-I 5

JAVA PROGRAMMING

First simple program line by line

The program begins with the following lines:

/*

This is a simple Java program. Call this

file ″Example.java″.

*/

This is a comment. The contents of a comment are ignored by the compiler. This is multiline

comment

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an identifier that

is the name of the class. The entire class definition, including all of its members, will be between the opening
curly brace ({) and the closing curly brace (}).

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

public static void main(String args[]) {

This line begins the main() method. All Java applications begin execution by calling main().

The public keyword is an access modifier, which allows the programmer to control the visibility of
class members. When a class member is preceded by public, then that member may be accessed
by code outside the class in which it is declared. main() must be declared as public, since it must
be called by code outside of its class when the program is started. The keyword static allows main(
) to be called without having to instantiate a particular instance of the class. This is necessary since
main() is called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value.

In main(), there is only one parameter, String args[] declares a parameter named args, which is
an array of instances of the class String. Objects of type String store character strings. In this case,
args receives any command-line arguments present when the program is executed.

System.out.println(″Java drives the Web.″);

This line outputs the string “Java drives the Web.” followed by a new line on the screen. Output is
actually accomplished by the built-in println() method. In this case, println() displays the string
which is passed to it. The line begins with System.out. System is a predefined class that provides
access to the system, and out is the output stream that is connected to the console.

UNIT-I 6

JAVA PROGRAMMING

Example2:

/*

This demonstrates a variable.
Call this file Example2.java.

*/

class Example2 {

public static void main(String[] args) {
int var1; // this declares a variable

int var2; // this declares another variable
var1 = 1024; // this assigns 1024 to var1
System.out.println("var1 contains " + var1);
var2 = var1 / 2;
System.out.print("var2 contains var1 / 2: ");
System.out.println(var2);

}

}

O /P:

var1 contains 1024

var2 contains var1 / 2: 512

Example3:

/*

This program illustrates the differences between int and double.

Call this file Example3.java.

*/

Class Example3 {

public static void main(String[] args) {
int w; // this declares an int variable

double x; // this declares a floating-point variable
w = 10; // assign w the value 10

x = 10.0; // assign x the value 10.0
System.out.println("Original value of w: " + w);
System.out.println("Original value of x: " + x);
System.out.println(); // print a blank line
// now, divide both by 4
w = w / 4;

x = x / 4;

System.out.println("w after division: " + w);
System.out.println("x after division: " + x);

}

}

O/P

Original value of w: 10
Original value of x: 10.0

w after division: 2 x a

f ter division: 2.5

UNIT-I 7

JAVA PROGRAMMING

Example:

/*

Try This 1-1

This program converts gallons to liters.
Call this program GalToLit.java.

*/

class GalToLit {

public static void main(String[] args) {

double gallons; // holds the number of gallons
double liters; // holds conversion to liters

gallons = 10; // start with 10 gallons
liters = gallons * 3.7854; // convert to liters
System.out.println(gallons + " gallons is " + liters + " liters.");

}

}

O/P:
10.0 gallons is 37.854 liters.

The Java Keywords
There are 50 keywords currently defined in the Java language. These keywords, combined with the

syntax of the operators and separators, form the foundation of the Java language.

These keywords cannot be used as identifiers. Thus, they cannot be used as names for a variable, class,

or method.

The keywords const and goto are reserved but not used.

Identifiers
Identifiers are used to name things, such as classes, variables, and methods. An identifier may be any

descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and dollar- sign

characters. (The dollar-sign character is not intended for general use.) They must not begin with a number.

Java is case-sensitive, so VALUE is a different identifier than Value. Some examples of valid identifiers are

GalToLit, Test, x, y2, maxLoad, my_var.

Invalid identifier names include these: 12x, not/ok.

UNIT-I 8

JAVA PROGRAMMING

The Primitive Data Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and

boolean. The primitive types are also commonly referred to as simple types .These can

be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued

signed numbers.

All of these are signed, positive and negative values. Java does not support unsigned, positive-only integers.

// Compute distance light travels using long variables. import

java.util.Scanner;

class Light {

public static void main(String args[]) {

int days;

long lightspeed;

long seconds;

long distance;

// approximate speed of light in miles per

second lightspeed = 186000;

Scanner sc=new Scanner(System.in);

System.out.println("Enter number of days");

days=sc.nextInt();

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute

distance System.out.print("In " + days);

System.out.print(" days light will travel about ");

System.out.println(distance + " miles.");

}

}

O/P:

Enter number of days 10

In 10 days light will travel about 160704000000 miles.

UNIT-I 9

JAVA PROGRAMMING

• Floating-point numbers This group includes float and double, which represent

numbers with fractional precision.

// Compute the area of a

circle. import

java.util.Scanner;

class Area {

public static void main(String args[]) {

double pi, r, a;

Scanner input= new

Scanner(System.in); pi = 3.1416; // pi,

approximately System.out.println("Enter

radius "); r=input.nextDouble();

a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);

}

}

O/P:

Enter radius 10.8

Area of circle is 366.436224

• Characters This group includes char, which represents symbols in a character set, like

letters and numbers.

In Java char is a 16-bit type. The range of a char is 0 to 65,535. There are no negative chars.

// Character variables can be handled like integers.

class CharArithDemo {

public static void main(String[] args) {

char ch;

ch = 'X';

System.out.println("ch contains " + ch);

ch++; // increment ch

System.out.println("ch is now " + ch);

ch = 90; // give ch the value Z

System.out.println("ch is now " + ch);

}

}

O/P:

ch contains X ch is

now Y ch is now Z

UNIT-I 10

JAVA PROGRAMMING

• Boolean This group includes boolean, which is a special type for representing true/false
values.

// Demonstrate boolean

values. class BoolDemo {

public static void main(String[] args) {

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed."); b

= false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

O/P:

b is false b is

true

This is executed.

10 > 9 is true

Literals are also commonly called constants

Java provides special escape sequences sometimes referred to as backslash character constants

Escape
Sequen
ce

Character

\n newline

\t tab

\b backspace

\f form feed

\r return

\" " (double quote)

\' ' (single quote)

\\ \ (back slash)

\uDDDD
character from the Unicode
character set (DDDD is four hex

digits)

UNIT-I 11

JAVA PROGRAMMING

Operators:
An operator is a symbol that tells the compiler to perform a specific mathematical, logical, or other

manipulation. Java has four general classes of operators: arithmetic, bitwise, relational, and logical. Java

also defines some additional operators that handle certain special situations.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Operato
r

Meaning

+ Addition(also unary plus)

- Subtraction(also unary
minus)

* Multiplication
/ Division

% Modulus

++ Increment

-- Decrement
The operands of the arithmetic operators must be of a numeric type. We cannot use them on boolean

types, but we can use them on char types, since the char type in Java is, essentially, a subset of int.

When the division operator is applied to an integer type, there will be no fractional component attached to

the result. The modulus operator, %, returns the remainder of a division operation. It can be applied to

floating-point types as well as integer types.

// Demonstrate the % operator. class

ModDemo {

public static void main(String[] args) {

int iresult, irem;

double dresult, drem;

iresult = 10 / 3;

irem = 10 % 3;

dresult = 10.0 / 3.0;

drem = 10.0 % 3.0;

System.out.println("Result and remainder of 10 / 3: " + iresult + " " + irem);

System.out.println("Result and remainder of 10.0 / 3.0: " + dresult + " " + drem);

}

}

O/P:

Result and remainder of 10 / 3: 3 1

Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

UNIT-I 12

JAVA PROGRAMMING

Increment and Decrement
The increment operator increases its operand by one. The decrement operator decreases its operand by

one. For example, this statement: x = x + 1;

can be rewritten like this by use of the increment operator: x++;

Similarly, this statement: x = x - 1;

is equivalent to x--;

Both increment and decrement operators can either prefix or postfix the operand.

There is no difference between the prefix and postfix forms. However, when the increment and/or

decrement operators are part of a larger expression, there is an important difference between these two

forms appears. In the prefix form, the operand is incremented or decremented before the value is obtained

for use in the expression. In postfix form, the previous value is obtained for use in the expression, and then

the operand is modified

EG:

x=10;

y=++x;

in this case y will be set to 11

x=10;

y=x++;

then y will be set to 10

// Demonstrate ++.
class IncDec {

public static void main(String args[]) {
int a = 1;
int b = 2;
int c;

int d;

c = ++b;
d = a++;
c++;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);

}

}

The output of this program follows:
a = 2

b = 3

c = 4

d = 1

UNIT-I 13

JAVA PROGRAMMING

Relational and Logical Operators
The relational operators determine the relationship that one operand has to the other.

Operato
r

Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal
to

<= Less than or equal to

The outcome of these operations is a boolean value.

Java does not define true and false in the same way as C/C++. In C/ C++, true is any nonzero value

and false is zero. In Java, true and false are nonnumeric values that do not relate to zero or nonzero.

Therefore, to test for zero or nonzero, you must explicitly employ one or more of the relational

operators

Logical operators combine two boolean values to form a resultant Boolean value.

Operato
r

Meaning

& AND

| OR

^ XOR

|| Short-circuit OR

&& Short-circuit AND

! NOT

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way that they operate

on the bits of an integer. The logical ! operator inverts the Boolean state: !true == false and

!false == true. The following table shows the effect of each logical operation:

UNIT-I 14

JAVA PROGRAMMING

// Demonstrate the relational and logical operators. class

RelLogOps {

public static void main(String [] args) {

int i, j;

boolean b1,

b2; i = 10;

j = 11;

if(i < j)

System.out.println("i < j");

if(i <= j)

System.out.println("i <= j");

if(i != j)

System.out.println("i != j");

if(i == j)

System.out.println("this won't execute");

if(i >= j)

System.out.println("this won't execute");

if(i > j)

System.out.println("this won't execute");

b1 = true;

b2 = false;

if(b1 & b2)

System.out.println("this won't execute");

if(!(b1 & b2))

System.out.println("!(b1 & b2) is true");

if(b1 | b2)

System.out.println("b1 | b2 is true");

if(b1 ^ b2)

System.out.println("b1 ^ b2 is true");

}

}

O/P:

i < j

i <= j i != j

!(b1 & b2) is true b1 | b2

is true

b1 ^ b2 is true

UNIT-I 15

JAVA PROGRAMMING

Short-circuit Logical operators:
These are secondary versions of the Boolean AND and OR operators, and are commonly known as

short-circuit logical operators.

The difference between normal and short-circuit versions is that the normal operands will always

evaluate each operand, but short-circuit versions will evaluate the second operand only when

necessary.

When the right-hand operand depends on the value of the left one in order to function properly. For

example, the following code fragment shows how you can take advantage of short-circuit logical

evaluation to be sure that a division operation will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception

when denom is zero. If this line of code were written using the single &version of AND, both sides

would be evaluated, causing a run-time exception when denom is zero.

// Demonstrate the short-circuit

operators. class SCops {

public static void main(String[] args) {

int n, d, q;

n = 10;

d = 2;

if(d != 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n); d

= 0; // now, set d to zero

// Since d is zero, the second operand is not

evaluated. if(d != 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n);

/* Now, try same thing without short-circuit operator.

This will cause a divide-by-zero error.

*/

if(d != 0 & (n % d) == 0) System.out.println(d

+ " is a factor of " + n);

}

}

UNIT-I 16

JAVA PROGRAMMING

Assignment operators:
The assignment operator is the single equal

sign, =. It has this general form: var =

expression;

Here, the type of var must be compatible with the type of expression.

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement.

Java provides special operators that can be used to combine an arithmetic operation with an assignment.

a = a + 4; can rewrite as: a += 4;

There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form var = var op expression; can be rewritten as var op=
expression;

Operator Precedence
The following table shows the order of precedence for Java operators, from highest to lowest.

Operators in the same row are equal in precedence. In binary operations, the order of evaluation is

left to right (except for assignment, which evaluates right to left). Although they are technically

separators, the [], (), and . can also act like operators. In that capacity, they would have the highest

precedence.

The Precedence of the Java Operators

Using Parentheses
Parentheses raise the precedence of the operations that are inside them.

UNIT-I 17

JAVA PROGRAMMING

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int,

short, char, and byte. These operators act upon the individual bits of their operands.

They are summarized in the following table:

The Bitwise Logical Operators
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each

operation.

// Uppercase letters. class

UpCase {

public static void main(String[] args) {

char ch;

for(int i=0; i < 10; i++) {

ch = (char) ('a' + i);

System.out.print(ch);

// This statement turns off the 6th bit.

ch = (char) ((int) ch & 65503); // ch is now uppercase

System.out.print(ch + " ");

}

}

}

O/P:

aA bB cC dD eE fF gG hH iI jJ

UNIT-I 18

JAVA PROGRAMMING

// Lowercase letters. class
LowCase {

public static void main(String[] args) {
char ch;
for(int i=0; i < 10; i++) {
ch = (char) ('A' + i);
System.out.print(ch);

// This statement turns on the 6th bit.

ch = (char) ((int) ch | 32); // ch is now lowercase
System.out.print(ch + " ");

}

}

}

O/P:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has

this general form:

value << num Here, num specifies the number of positions to left-shift the value in value.

The Right Shift
The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times.

Its general form is shown here:

value >> num Here, num specifies the number of positions to right-shift the value in value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of if-then- else

statements. This operator is the ?.

The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If

expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated.

import java.util.Scanner;

public class Largest

{

public static void main(String[] args)

{

int a, b, c, d;

Scanner s = new Scanner(System.in);
System.out.println("Enter all three numbers:");
a = s.nextInt();
b = s.nextInt();
c = s.nextInt();

d = a>b?(a>c?a:c):(b>c?b:c);

System.out.println("Largest of "+a+","+b+","+c+" is: "+d);

}

}

UNIT-I 19

JAVA PROGRAMMING

Control Statements
A programming language uses control statements to cause the flow of execution to advance and

branch based on changes to the state of a program. Java’s program control statements can be put

into the following categories: Selection, Iteration and Jump.

Selection statements allow your program to choose different paths of execution based upon the

outcome of an expression or the state of a variable. Iteration statements enable program execution

to repeat one or more statements (that is, iteration statements form loops). Jump statements allow

your program to execute in a nonlinear fashion.

Input characters from the keyboard
To read a character from keyboard we can use System.in.read (). The read() waits until the user

presses a key and then returns the result. The character returned as an integer, so it must be cast

into a char to assign it to a char variable.

// Read a character from the keyboard.

class KbIn {

public static void main(String[] args)

throws java.io.IOException {

char ch;

System.out.print("Press a key followed by ENTER: ");

ch = (char) System.in.read(); // get a char

System.out.println("Your key is: " + ch);

}

}

O/P:
Press a key followed by ENTER: k Your
key is: k
The above program uses throws java.io.IOException .This line is necessary to handle input errors. It is

a part of java exception handling mechanism.

if statement:
The if statement is Java’s conditional branch statement. It can be used to route program execution through

two different paths. Here is the general form of the if statement:

if (condition)

statement1; else

statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly braces (that

is, a block). The condition is any expression that returns a boolean value. The else clause is optional.

UNIT-I 20

JAVA PROGRAMMING

// Guess the letter game.

class Guess {

public static void main(String[] args)

throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");

System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // read a char from the

keyboard if(ch == answer) System.out.println("** Right **");

}

}

The next version uses else to print a message when the wrong letter is picked

// Guess the letter game, 2nd version. class

Guess2 {

public static void main(String[] args)

throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");

System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // get a char

if(ch == answer) System.out.println("** Right **");

else System.out.println("...Sorry, you're wrong.");

}

}

Nested ifs
A nested if is an if statement that is the target of another if or else. When you nest ifs, the main thing to

remember is that an else statement always refers to the nearest if statement that is within the same block

as the else and that is not already associated with an else.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if else-if

ladder. It looks like

this: if(condition)
statement;

else if(condition)
statement;

else if(condition)

statement;
...

else

statement;

UNIT-I 21

JAVA PROGRAMMING

The if statements are executed from the top down. As soon as one of the conditions controlling the if is

true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the

conditions is true, then the final else statement will be executed. The final else acts as a default condition;

// Demonstrate an if-else-if ladder.
class Ladder {

public static void main(String[] args) {
int x;
for(x=0; x<6; x++) {
if(x==1)
System.out.println("x is one");

else if(x==2)
System.out.println("x is two");
else if(x==3)
System.out.println("x is three");
else if(x==4)
System.out.println("x is four");
else
System.out.println("x is not between 1 and 4");

}

}

}

O/P:

x is not between 1 and 4 x is
one
x is two x is
three x is four
x is not between 1 and 4

switch
The switch provides for a multi-way branch. It often provides a better alternative than a large series of if-

else-if statements.

Here is the general form of a switch statement:

UNIT-I 22

JAVA PROGRAMMING

// Demonstrate the switch. class

SwitchDemo {

public static void main(String[] args) {

int i;

for(i=0; i<10; i++)

switch(i) {

case 0: System.out.println("i is zero");

break;

case 1: System.out.println("i is one");

break;

case 2: System.out.println("i is two");

break;

case 3: System.out.println("i is three");

break;

case 4: System.out.println("i is four");

break;

default: System.out.println("i is five or more");

}

}

}

The break statement is optional. If you omit the break, execution will continue on into the next

case.
Nested switch Statements

We can use a switch as part of the statement sequence of an outer switch. This is called a nested

switch. Since a switch statement defines its own block, no conflicts arise between the case

constants in the inner switch and those in the outer switch. For example, the following fragment is

perfectly valid:

switch(count) {

case 1:switch(target) { // nested switch

case 0: System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

case 2: // …

}

break;

UNIT-I 23

JAVA PROGRAMMING

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression. That is, the switch looks only for a match between

the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a switch

statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

Iteration Statements
Java’s iteration statements are for, while, and do-

while. while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its controlling

expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the

conditional expression is true. When condition becomes false, control passes to the next line of code

immediately following the loop. The curly braces are unnecessary if only a single statement is being

repeated

// Demonstrate the while loop. class
WhileDemo {

public static void main(String[] args) {

char ch;
// print the alphabet using a while loop
ch = 'a';
while(ch <= 'z') {
System.out.print(ch);
ch++;

}

}

}

do-while
The do-while loop always executes its body at least once, because its conditional expression is at the

bottom of the loop. Its general form is

do {

// body of loop

} while (condition);
The do-while loop is especially useful when you process a menu selection, because you will usually

want the body of a menu loop to execute at least once.

UNIT-I 24

JAVA PROGRAMMING

// body

}

The general form of the traditional for

statement: for(initialization; condition;

iteration) {

for loop

class SqrRoot {

// Show square roots of 1 to 9.

public static void main(String[] args) {

double num, sroot;

for(num = 1.0; num < 10.0; num++) {

sroot = Math.sqrt(num);

System.out.println("Square root of " + num +

" is " + sroot);

}

}

}

Some variations on for loop:
 It is possible to declare the variable inside the initialization portion of the for.

// compute the sum and product of the numbers 1
through 5 for(int i = 1; i <= 5; i++) {
sum += i; // i is known throughout the
loop product *= i;

}
When you declare a variable inside a for loop, there is one important point to remember: the

scope of that variable ends when the for statement does.

 When using multiple loop control variables the initialization and iteration expressions

for each variable are separated by commas.

for(i=0, j=10; i < j; i++, j--)

System.out.println("i and j: " + i + " " +

j);

 It is possible for any or all of the initialization, condition, or iteration portions of the for

loop to be blank.

i = 0; // move initialization out of
loop for(; i < 10;) {
System.out.println("Pass #" + i);
i++; // increment loop control var

}

NESTED LOOPS:
Java allows loops to be nested. That is, one loop may be inside another.

for(i=0; i<=5; i++) {

for(j=1; j<=i; j++)

System.out.print("*"

JAVA PROGRAMMING

); System.out.println();

}

UNIT-I 25

JAVA PROGRAMMING

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a statement

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as a

“civilized” form of goto.

Using break to Exit a Loop: By using break, you can force immediate termination of a loop,

bypassing the conditional expression and any remaining code in the body of the loop.

// Using break to exit a loop.
class BreakDemo {

public static void main(String[] args) {
int num;

num = 100;

// loop while i-squared is less than
num for(int i=0; i < num; i++) {
if(i*i >= num) break; // terminate loop if i*i >= 100
System.out.print(i + " ");

}

System.out.println("Loop complete.");

}

}
When used inside a set of nested loops, the break statement will only break out of the innermost loop

Using break as a Form of Goto: The break statement can also be employed by itself to

provide a “civilized” form of the goto statement.

The general form of the labeled break statement is shown

here: break label;

// Using break with a label.
class Break4 {

public static void main(String[] args) {
int i;

for(i=1; i<4; i++) { one: {

two: {

three: {

System.out.println("\ni is " + i);
if(i==1) break one;
if(i==2) break two; if(i==3)
break three;
// this is never reached
System.out.println("won't print");

}

System.out.println("After block three.");

}

System.out.println("After block two.");

}

System.out.println("After block one.");

}

System.out.println("After for.");

}

}

UNIT-I 26

JAVA PROGRAMMING

Using continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure. This is

accomplished using continue. The continue statement forces the next iteration of the loop to take place,

skipping any code between itself and the conditional expression that controls the loop.

// Use continue.
class ContDemo {

public static void main(String[] args) {
int i;
// print even numbers between 0 and 100
for(i = 0; i<=100; i++) {
if((i%2) != 0) continue; // iterate
System.out.println(i);

}

}

}
As with the break statement, continue may specify a label to describe which enclosing loop to continue.

Here is an example program that uses continue to print a triangular multiplication table for 0 through 9:

// Using continue with a label.

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {

for(int j=0; j<10; j++) {

if(j > i) {

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

The continue statement in this example terminates the loop counting j and continues with the next

iteration of the loop counting i. Here is the output of this program:

return
The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method.

UNIT-I 27

JAVA PROGRAMMING

ARRAYS:
An array is a collection of variables of same type, referred to by a common name. Arrays of any type can

be created and may have one or more dimensions. A specific element in an array is accessed by its index.

Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables.

The general form to declare a one-dimensional array:

type[] array-name=new type[size];

Since arrays are implemented as objects, the creation of an array is a two-step process. First declare

an array reference variable. Second allocate memory for the array, assigning the reference to that

memory to the array. Thus arrays in java are dynamically allocated using new operator.

Eg : int[] sample=new int[10];

It is possible to break the above declaration.

int[] sample;

sample=new int[10];

// Demonstrate a one-dimensional array.
class ArrayDemo {

public static void main(String[] args) {

int[] sample = new int[10];

int i;

for(i = 0; i < 10; i = i+1)

sample[i] = i;

for(i = 0; i < 10; i = i+1)

System.out.println("This is sample[" + i + "]: " + sample[i]);

}

}

O/P:

This is sample[0]: 0 This is
sample[1]: 1 This is
sample[2]: 2 This is
sample[3]: 3 This is
sample[4]: 4 This is
sample[5]: 5 This is
sample[6]: 6 This is
sample[7]: 7 This is
sample[8]:8 This is
sample[9]:9

UNIT-I 28

JAVA PROGRAMMING

// Find the minimum and maximum values in an array.
class MinMax {

public static void main(String[] args) {

int[] nums = new int[10];

int min, max;

nums[0] = 99;

nums[1] = -10;

nums[2] = 100123;

nums[3] = 18;

nums[4] = -978;

nums[5] = 5623;

nums[6] = 463;

nums[7] = -9;

nums[8] = 287;

nums[9] = 49;

min = max = nums[0];

for(int i=1; i < 10; i++) {

if(nums[i] < min) min = nums[i];

if(nums[i] > max) max = nums[i];

}

System.out.println("min and max: " + min + " " + max);

}

}

// Use array initializers.
class MinMax2 {

public static void main(String[] args) {

int[] nums = { 99, -10, 100123, 18, -978, 5623, 463, -9, 287, 49 };

int min, max;

min = max = nums[0];

for(int i=1; i < 10; i++) {

if(nums[i] < min) min = nums[i];

if(nums[i] > max) max = nums[i];

}

System.out.println("Min and max: " + min + " " + max);

}

}

UNIT-I 29

JAVA PROGRAMMING

Multidimensional Arrays:
Two-dimensional arrays:

A two dimensional array is a list of one-dimensional array. A two dimensional array can be thought of as

creating a table of data organized by row and column. An individual item of data is accessed by specifying

its row and column position.

To declare a two dimensional array, we must specify two dimensions.

int[] [] table=new int[10] [20];

// Demonstrate a two-dimensional array.
class TwoD {

public static void main(String[] args) {
int t, i;
int[][] table = new int[3][4];
for(t=0; t < 3; ++t) {
for(i=0; i < 4; ++i) {
table[t][i] = (t*4)+i+1;

System.out.print(table[t][i] + " ");

}

System.out.println();

}

}

}

O/P:
1 2 3 4
5 6 7 8
9 10 11 12

Irregular arrays:
When allocating memory for multi dimensional arrays we need to specify only the memory for the first

dimension. We can allocate the remaining dimensions separately.

// Manually allocate differing size second dimensions. class

Ragged {

public static void main(String[] args) {

int[][] riders = new int[7][];

riders[0] = new int[10];

riders[1] = new int[10];

riders[2] = new int[10];

riders[3] = new int[10];

riders[4] = new int[10];

riders[5] = new int[2];

riders[6] = new int[2];

int i, j;

UNIT-I 30

JAVA PROGRAMMING

// fabricate some
data for(i=0; i < 5;
i++) for(j=0; j < 10;
j++)

riders[i][j] = i + j + 10;
for(i=5; i < 7; i++) for(j=0;
j < 2; j++)

riders[i][j] = i + j + 10;

System.out.println("Riders per trip during the week:");
for(i=0; i < 5; i++) {
for(j=0; j < 10; j++)
System.out.print(riders[i][j] + " ");
System.out.println();

}

System.out.println();

System.out.println("Riders per trip on the weekend:");
for(i=5; i < 7; i++) {

for(j=0; j < 2; j++)
System.out.print(riders[i][j] + " ");
System.out.println();

}

}

}

Initializing multi dimensional array:
A multidimensional array can be initialized by enclosing each dimension’s initialize list within its own

set of braces.

// Initialize a two-dimensional array.
class Squares {

public static void main(String[] args) {
int[][] sqrs = {

{ 1, 1 },

{ 2, 4 },

{ 3, 9 },

{ 4, 16 },

{ 5, 25 },

{ 6, 36 },

{ 7, 49 },

{ 8, 64 },

{ 9, 81 },

{ 10, 100 }

};

int i, j;

for(i=0; i < 10; i++) {

for(j=0; j < 2; j++)

System.out.print(sqrs[i][j] + " ");

System.out.println();

}

}

}

UNIT-I 31

JAVA PROGRAMMING

Using the length member:
Because arrays are implemented as objects, each array has associated with it a length instance variable

that contains the number of elements that the array can hold. In other words length contains the size of

the array.

// Use the length array member.
class LengthDemo {

public static void main(String[] args) {

int[] list = new int[10];

int[] nums = { 1, 2, 3 };

int[][] table = { // a variable-length table

{1, 2, 3},

{4, 5},

{6, 7, 8, 9}

};

System.out.println("length of list is " + list.length);

System.out.println("length of nums is " + nums.length);

System.out.println("length of table is " + table.length);

System.out.println("length of table[0] is " + table[0].length);

System.out.println("length of table[1] is " + table[1].length);

System.out.println("length of table[2] is " + table[2].length);

System.out.println();

// use length to initialize list

for(int i=0; i < list.length; i++)

list[i] = i * i;

System.out.print("Here is list: ");

// now use length to display list

for(int i=0; i < list.length; i++)

System.out.print(list[i] + " ");

System.out.println();

}

}

UNIT-I 32

JAVA PROGRAMMING

The for-each style for loop:
A for-each style loop is designed to cycle through a collection of objects, such as an array, in

strictly sequential fashion, from start to finish.

The for-each style of for is also referred to as the enhanced for

loop. The general form of the for-each version of the for is:

for(type itr-var: collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive

the elements from a collection, one at a time, from beginning to end. The collection being cycled

through is specified by collection.

Because the iteration variable receives values from the collection, type must be the same as (or

compatible with) the elements stored in the collection.

EG: compute the sum of the values in an array:

Int[] nums= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

The for-each style for automates the preceding loop. Specifically, it eliminates the need to establish

a loop counter, specify a starting and ending value, and manually index the array. Instead, it

automatically cycles through the entire array, obtaining one element at a time, in sequence, from

beginning to end. For example, here is the preceding fragment rewritten using a for-each version of

the for:

Int[] nums= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in

nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.

// Use a for-each style for loop.

class ForEach {

public static void main(String[] args) {

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

// Use for-each style for to display and sum the
values. for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;

}

System.out.println("Summation: " + sum);

}

}

UNIT-I 33

JAVA PROGRAMMING

There is one important point to understand about the for-each style loop. Its iteration variable is “read-only”

as it relates to the underlying array. An assignment to the iteration variable has no effect on the underlying

array.

// The for-each loop is essentially read-only.

class NoChange {

public static void main(String[] args) {

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x : nums) {

System.out.print(x + " ");

x = x * 10; // no effect on nums

}

System.out.println();

for(int x : nums)

System.out.print(x + " ");

System.out.println();

}

}

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays
The enhanced version of the for also works on multidimensional arrays.

// Use for-each style for on a two-dimensional array. class
ForEach2 {

public static void main(String[] args) {

int sum = 0;

int[][] nums = new int[3][5];

// give nums some values
for(int i = 0; i < 3; i++) for(int
j=0; j < 5; j++)

nums[i][j] = (i+1)*(j+1);

// Use for-each for loop to display and sum the values.
for(int[] x : nums) {
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;

}

}

System.out.println("Summation: " + sum);

}

}

UNIT-I 34

JAVA PROGRAMMING

O/P:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 2

Value is: 4

Value is: 6

Value is: 8

Value is: 10

Value is: 3

Value is: 6

Value is: 9

Value is: 12

Value is: 15

Summation: 90

// Search an array using for-each style
for. import java.util.Scanner;
public class Search {

public static void main(String[] args) {
int[] nums = { 6, 8, 3, 7, 5, 6, 1, 4 };

int val;
Scanner a=new Scanner(System.in);
System.out.println("Enter a number to search");

val=a.nextInt();

boolean found = false;
// Use for-each style for to search nums for val.

for(int x : nums)
{ if(x == val) {
found = true;
break;
}

}

if(found)
System.out.println("Value found!");

else
System.out.println("Value not found!");

}

}

O/P:
Enter a number to search 8

Value found!

Enter a number to search 10

Value not found!

UNIT-I 35

JAVA PROGRAMMING

STRINGS:
One of the most important data type in java is String. String defines and supports character

sting. In java strings are objects

Constructing strings:

String str= new String(“HELLO”);

This creates a String object called str that contains the character string “HELLO”.

A string can be constructed from another string

String str2= new String(str);

Another easy way to create a string is

String str=”Java strings are powerful”;

// Introduce String.
class StringDemo {

public static void main(String[] args) {

// declare strings in various ways

String str1 = new String("Java strings are objects.");

String str2 = "They are constructed various ways.";

String str3 = new String(str2);

System.out.println(str1);

System.out.println(str2);

System.out.println(str3);

}

}

Operating on strings:

The String class contains several methods that operate on strings.

boolean
equals(str)

Returns true if the invoking string contains the same character sequence
as str

int length() Returns the number of characters in the string

char charAt(index) Returns the character at the index specified by index

int compareTo(str) Returns less than zero if the invoking string is less than str, greater than
zero if

the the invoking string is greater than str, and zero if the strings are equal

int indexOf(str) Searches the invoking string for the substring specified by str. Returns
the index

of the first match or -1 on failure

int lastIndexOf(str) Searches the invoking string for the substring specified by str. Returns
the index

of the last match or -1 on failure

UNIT-I 36

JAVA PROGRAMMING

class StrOps {

// Some String operations.

public static void main(String[] args) {

String str1 = "When it comes to Web programming, Java is #1.";

String str2 = new String(str1);

String str3 = "Java strings are powerful.";

int result, idx;

char ch;

System.out.println("Length of str1: " + str1.length());

for(int i=0; i < str1.length(); i++) // display str1, one char at a

time. System.out.print(str1.charAt(i));

System.out.println();

if(str1.equals(str2))

System.out.println("str1 equals str2");

else

System.out.println("str1 does not equal str2");

if(str1.equals(str3))

System.out.println("str1 equals str3");

else

System.out.println("str1 does not equal str3");

result = str1.compareTo(str3);

if(result == 0)

System.out.println("str1 and str3 are equal");

else if(result < 0)

System.out.println("str1 is less than str3");

else

System.out.println("str1 is greater than str3");

// assign a new string to str2

str2 = "One Two Three One";

idx = str2.indexOf("One");

System.out.println("Index of first occurrence of One: " + idx);

idx = str2.lastIndexOf("One");

System.out.println("Index of last occurrence of One: " + idx);

}

}

UNIT-I 37

JAVA PROGRAMMING

Array of strings:

// Demonstrate String arrays. class

StringArrays {

public static void main(String[] args) {

String[] strs = { "This", "is", "a", "test." };

System.out.println("Original array: ");

for(String s : strs)

System.out.print(s + " ");

System.out.println("\n");

// change a string in the

array strs[1] = "was";

strs[3] = "test, too!";

System.out.println("Modified array: ");

for(String s : strs)

System.out.print(s + " ");

}

}

// Use substring(). class

SubStr {

public static void main(String[] args) {

String orgstr = "Java makes the Web move.";

// construct a substring

String substr = orgstr.substring(5, 18);

System.out.println("orgstr: " + orgstr);

System.out.println("substr: " + substr);

}

}

UNIT-I 38

JAVA PROGRAMMING

// Use a string to control a switch statement. class

StringSwitch {

public static void main(String[] args) {

String command = "cancel";

switch(command) {

case "connect": System.out.println("Connecting");

// ...

break;

case "cancel": System.out.println("Canceling");

// ...

break;

case "disconnect": System.out.println("Disconnecting");

// ...

break;

default: System.out.println("Command Error!");

break;

}

}

}

Using command line arguments:
// Display all command-line information. class

CLDemo {

public static void main(String[] args) {

System.out.println("There are " + args.length + " command-line arguments.");

System.out.println("They are: ");

for(int i=0; i<args.length; i++)

System.out.println("arg[" + i + "]: " + args[i]);

}

}

UNIT-I 39

JAVA PROGRAMMING

STRING HANDLING:
The String class is packaged in java.lang. Thus it is automatically available to all programs.

String objects can be constructed in a number of ways, making it easy to obtain a string when needed.

String Constructors:
// Demonstrate several String constructors.

class StringConsDemo {

public static void main(String[] args) {
char[] digits = new char[16];

// Create an array that contains the digits 0 through 9

// plus the hexadecimal values A through F.
for(int i=0; i < 16; i++) {

if(i < 10) digits[i] = (char) ('0'+i);

else digits[i] = (char) ('A' + i - 10);

}

// Create a string that contains all of the array.
String digitsStr = new String(digits);
System.out.println(digitsStr);
// Create a string the contains a portion of the array.
String nineToTwelve = new String(digits, 9, 4);
System.out.println(nineToTwelve);

// Construct a string from a string.

String digitsStr2 = new String(digitsStr);

System.out.println(digitsStr2);
// Now, create an empty string.
String empty = new String();
// This will display nothing:
System.out.println("Empty string: " + empty);

}

}

String Concatenation
In general, Java does not allow operators to be applied to String objects. The one exception to this rule

is the + operator, which concatenates two strings, producing a String object as the result.

String age = "9";

String s = "He is " + age + " years
old."; System.out.println (s);
This displays the string “He is 9 years old.”

String Concatenation with Other Data Types
You can concatenate strings with other types of data. For example, consider this slightly different version
of the earlier example:

int age = 9;
String s = "He is " + age + " years
old."; System.out.println (s);

In this case, age is an int rather than another String, but the output produced is the same as before. This
is because the int value in age is automatically converted into its string representation within a String

object.

UNIT-I 40

JAVA PROGRAMMING

// getChars()

One practical use of string concatenation is found when you are creating very long strings. Instead

of letting long strings wrap around within your source code, you can break them into smaller pieces,

using the + to concatenate them. Here is an example:

// Using concatenation to prevent long
lines. class ConCat {

public static void main(String args[]) {
String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";

System.out.println(longStr);

}

}

Character Extraction
The String class provides a number of ways in which characters can be extracted from a String

object

charAt()
To extract a single character from a String, you can refer directly to an individual character via the

charAt() method. It has this general form:
char charAt(int index)

// Demonstrate charAt() and length().
class CharAtAndLength {

public static void main(String[] args) {

String str = "Programming is both art and science.";

// Cycle through all characters in the string.
for(int i=0; i < str.length(); i++)
System.out.print(str.charAt(i) + " ");
System.out.println();

}

}

getChars()
If you need to extract more than one character at a time, you can use the getChars() method. It

has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

class GetCharsDemo {

public static void main(String[] args) {

String str = "Programming is both art and science.";
int start = 15;

int end = 23;

char[] buf = new char[end - start];
str.getChars(start, end, buf, 0);
System.out.println(buf);

}

}

UNIT-I 41

JAVA PROGRAMMING

String Comparison
The String class includes a number of methods that compare strings or substrings within strings.

equals() and equalsIgnoreCase()
To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns true if the strings

contain the same characters in the same order, and false otherwise.

The comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase().

When it compares two strings, it considers A-Z to be the same as a-z. It has this

general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns
true

if the strings contain the same characters in the same order, and false otherwise.

// Demonstrate equals() and equalsIgnoreCase().

class EqualityDemo {

public static void main(String[] args) {
String str1 = "table";

String str2 = "table";
String str3 = "chair";
String str4 = "TABLE";
if(str1.equals(str2))
System.out.println(str1 + " equals " + str2);

else

System.out.println(str1 + " does not equal " + str2);
if(str1.equals(str3))
System.out.println(str1 + " equals " + str3);

else

System.out.println(str1 + " does not equal " + str3);
if(str1.equals(str4))
System.out.println(str1 + " equals " + str4);

else
System.out.println(str1 + " does not equal " + str4);

if(str1.equalsIgnoreCase(str4))
System.out.println("Ignoring case differences, " + str1 +" equals " + str4);

else
System.out.println(str1 + " does not equal " + str4);

}

}

O/P:
table equals table

table does not equal chair

table does not equal TABLE

Ignoring case differences, table equals TABLE

UNIT-I 42

JAVA PROGRAMMING

equals() Versus = =
It is important to understand that the equals() method and the == operator perform two different operations.
The equals() method compares the characters inside a String object. The == operator compares two object
references to see whether they refer to the same instance.

// equals() vs = =

class EqualsNotEqualTo {

public static void main(String args[]) {
String s1 = "Hello";

String s2 = new String(s1);

System.out.println(s1 + " equals " + s2 + " −> " +

s1.equals(s2));

System.out.println(s1 + " == " + s2 + " −> " + (s1 == s2));

}

}

The variable s1 refers to the String instance created by “Hello”. The object referred to by s2 is created with
s1 as an initializer. Thus, the contents of the two String objects are identical, but they are distinct objects.
This means that s1 and s2 do not refer to the same objects and are, therefore, not = =, as is shown here by
the output of the preceding example:

Hello equals Hello −> true

Hello == Hello −> false

regionMatches()
The regionMatches() method compares a specific region inside a string with another specific region in

another string. Here are the general forms for two methods:

boolean regionMatches(int startIndex, String str2,

int str2StartIndex, int

numChars) boolean regionMatches(boolean

ignoreCase,

int startIndex, String str2,

int str2StartIndex, int numChars)

// Demonstrate

RegionMatches. class

CompareRegions {

public static void main(String[] args) {

String str1 = "Standing at river's edge.";

String str2 = "Running at river's edge.";

if(str1.regionMatches(9, str2, 8, 12))

System.out.println("Regions match.");

if(!str1.regionMatches(0, str2, 0, 12))

System.out.println("Regions do not match.");

}

}

O/P:

Regions match. Regions do

not match.

UNIT-I 43

JAVA PROGRAMMING

startsWith() and endsWith()
The startsWith() method determines whether a given String begins with a specified string. Conversely,

endsWith() determines whether the String in question ends with a specified string. They have the following

general forms:

boolean startsWith(String str)

boolean endsWith(String str)

A second form of startsWith(), shown here, lets you specify a starting

point: boolean startsWith(String str, int startIndex)

compareTo() and compareToIgnoreCase()
It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the comparison is

returned and is interpreted as shown here:

Value Meanin
g

Less than zero The invoking string is less than str
Greater than
zero

The invoking string is greater than
str

Zero The two strings are equal.

If you want to ignore case differences when comparing two strings, use

compareToIgnoreCase(), as shown here:

int compareToIgnoreCase(String str)

substring()
You can extract a substring using substring(). It has two forms. The first

is String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a copy of

the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending index of the

substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point

replace()
The replace() method has two forms. The first replaces all occurrences of one character in the

invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement. The

resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

UNIT-I 44

puts the string “Hewwo” into s.

The second form of replace() replaces one character sequence with another. It has this general

form:

String replace(CharSequence original, CharSequence replacement)

trim()
The trim() method returns a copy of the invoking string from which any leading and trailing

whitespace has been removed. It has this general form:

String trim()

Eg: String str=” gamma “;

After str=str.trim();

Str will contain only the string”gamma”

Changing the Case of Characters Within a String
The method toLowerCase() converts all the characters in a string from uppercase to lowercase. The

toUpperCase() method converts all the characters in a string from lowercase to uppercase.

Nonalphabetical characters, such as digits, are unaffected. Here are the simplest forms of these

methods:

String toLowerCase()
String toUpperCase()

// Demonstrate toUpperCase() and toLowerCase().
class ChangeCase {

public static void main(String[] args)

{

}

O/P:

String str = "This is a test.";
System.out.println("Original: " + str);
String upper = str.toUpperCase(); String
lower = str.toLowerCase();
System.out.println("Uppercase: " + upper);
System.out.println("Lowercase: " + lower);

}

Original: This is a test.

Uppercase: THIS IS A TEST.

Lowercase: this is a test.

String represents fixed-length, immutable character sequences.

In contrast, StringBuffer represents growable and writable character sequences. StringBuffer may

have characters and substrings inserted in the middle or appended to the end.

StringBuilder is identical to StringBuffer except for one important difference: it is not

synchronized, which means that it is not thread-safe. The advantage of StringBuilder is

faster performance.

46

JAVA UNIT-V Page 46

UNIT-III 30

(AN UGC AUTONOMOUS INSTITUTION)

Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade Recognized Under Section
2(f) of UGC Act 1956, ISO 9001:2015 Certified Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500

005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

 (R22)

 OOP through Java

Lecture Notes

 B. Tech II YEAR – I SEM

Prepared by

MOHD ANAS ALI
(Assistant Professor)

Dept. CSE(AIML)

http://www.mist.ac.in/
http://www.mist.ac.in/

UNIT-III 30

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem. L T P C

 3 0 0 3

Course Objectives

● To Understand the basic object-oriented programming concepts and apply them in
problem solving.

● To Illustrate inheritance concepts for reusing the program.

● To Demonstrate multitasking by using multiple threads and event handling

● To Develop data-centric applications using JDBC.

● To Understand the basics of java console and GUI based programming Course Outcomes

● Demonstrate the behavior of programs involving the basic programming constructs like
control structures, constructors, string handling and garbage collection.

● Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by
using extend and implement keywords

● Use multithreading concepts to develop inter process communication.

 ● Understand the process of graphical user interface design and implementation using AWT
or swings.

● Develop applets that interact abundantly with the client environment and deploy on the
server

UNIT - I Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop
concepts, coping with complexity, abstraction mechanisms. A way of viewing world –
Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types,
variables, scope and lifetime of variables, arrays, operators, expressions, control statements,
type conversion and casting, simple java program, concepts of classes, objects,
constructors, methods, access control, this keyword, garbage collection, overloading
methods and constructors, method binding, inheritance, overriding and exceptions,
parameter passing, recursion, nested and inner classes, exploring string class.

 UNIT - II Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class
object, subclass, subtype, substitutability, forms of inheritance specialization, specification,
construction, extension, limitation, combination, benefits of inheritance, costs of inheritance.
Member access rules, super uses, using final with inheritance, polymorphism- method
overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package,
Understanding CLASSPATH, importing packages, differences between classes and
interfaces, defining an interface, implementing interface, applying interfaces, variables in
interface and extending interfaces. Exploring java.io.

UNIT - III Exception handling and Multithreading-- Concepts of exception handling, benefits
of exception handling, Termination or resumptive models, exception hierarchy, usage of try,

UNIT-III 30

catch, throw, throws and finally, built in exceptions, creating own exception subclasses.
String handling, Exploring java.util. Differences between multithreading and multitasking,
thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread
communication, thread groups, daemon threads. Enumerations, autoboxing, annotations,
generics.

UNIT-III 1

JAVA UNIT–IV Page 1

Object Oriented Programming using JAVA

UNIT IV

Multithreaded Programming

 A multithreaded program contains two or more parts that can run concurrently.

 Each part of such a program is called a thread, and each thread defines a separate

path of execution.

 A thread introduces Asynchronous behaviour.

Multitasking

Two types:

1. Process based multitasking

2. Thread based multitasking

Process based multitasking Thread based multitasking

Process is a program under execution Thread is one part of a program.

Two or more programs run concurrently Two or more parts of a single program run

concurrently.

Heavyweight process. Lightweight process.

Programs requires separate address spaces Same address space is shared by threads.

Interprocess communication is expensive and

limited.

Interthread communication is inexpensive.

Context switching from one process to

another is also costly.

Context switching from one thread to the next

is lower in cost.

May create more idle time. Reduces the idle time.

Ex: Running a Java compiler and

downloading a file from a web site at the

same time

Ex: We can format a text using a Text editor

and printing the data at the same time.

UNIT-III 2

JAVA UNIT–IV Page 2

The Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries are

designed with multithreading in mind.

a) The Thread class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its companion

interface, Runnable.

Thread class methods

Method Meaning

getName() Obtain a thread’s name.

getPriority() Obtain a thread’s priority.

setName() Give a name to a thread

setPriority() Set the priority to a thread

isAlive() Determine if a thread is still running.

Join() Wait for a thread to terminate.

Run() Entry point for the thread.

Sleep() Suspend a thread for a period of time.

Start() Start a thread by calling its run method.

currentThread() returns a reference to the thread in which it is called

b) The Main thread

 When a Java program starts up, one thread begins running immediately. This isusually

called the main thread of the program.

 It is the thread from which other “child” threads will be spawned.

// Controlling the main Thread.
class CurrentThreadDemo {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

UNIT-III 3

JAVA UNIT–IV Page 3

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);

}

}

catch (InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

}

Output:

Thread Group:

A thread group is a data structure that controls the state of a collection of threads as a whole.

Creating and Starting a Thread

Two ways to create a thread –

1. By extending Thread class

2. By implementing Runnable interface

UNIT-III 4

JAVA UNIT–IV Page 4

 run() method is the entry point for another concurrent thread of execution in the

program.

1. By extending Thread class

 The first way to create a thread is to create a new class that extends Thread,

and then to create an instance of that class.

 The extending class must override the run() method, which is the entry point

for the new thread.

 It must also call start() to begin execution of the new thread.

Example

class MultipleThreads extends Thread

{

MultipleThreads(String name)

{

super(name);

start();

}

public void run()

{

System.out.print(Thread.currentThread().getName());

System.out.println(" - Thread Demo");

}

public static void main(String ar[])

{

MultipleThreads t1 = new MultipleThreads("One");

MultipleThreads t2 = new MultipleThreads("Two");

MultipleThreads t3 = new MultipleThreads("Three");

}

}

UNIT-III 5

JAVA UNIT–IV Page 5

2. By implementing Runnable interface

 The easiest way to create a thread is to create a class that implements the

Runnable interface.

 To implement Runnable, a class need only implement a single method called

run(), which is declared like this:

public void run()

 Inside run(), we will define the code that constitutes the new thread.

 It is important to understand that run() can call other methods, use other

classes, and declare variables, just like the main thread can.

 The only difference is that run() establishes the entry point for another,

concurrent thread of execution within your program. This thread will end

when run() returns.

Example

class RMultipleThreads implements Runnable
{

String tname;
Thread t;
RMultipleThreads(String name)
{

tname = name;

t = new Thread(this,tname);
t.start();

}
public void run()
{
System.out.println(Thread.currentThread().getName()+"- Thread Demo");

}
public static void main(String ar[])
{

RMultipleThreads t1 = new RMultipleThreads("One");
RMultipleThreads t2 = new RMultipleThreads("Two");
RMultipleThreads t3 = new RMultipleThreads("Three");

}

}

UNIT-III 6

JAVA UNIT–IV Page 6

Which of the above two approaches is better?

 The first approach is easier to use in simple applications, but is limited by the factthat

our class must be a subclass of Thread. In this approach, our class can’t extend any

other class.

 The second approach, which employs a Runnable object, is more general, because

the Runnable object can subclass a class other than Thread.

Thread Priorities, isAlive() and join() methods

Thread Priorities

1) Every thread has a priority that helps the operating system to determine the order in

which threads are scheduled for execution.

2) Thread priorities are integers that ranges between, 1 to 10.

MIN-PRIORITY (a constant of 1)

MAX-PRIORITY (a constant of 10)

3) By default every thread is given a NORM-PRIORITY(5). The main thread always have

NORM-PRIORITY.

4) Thread’s priority is used in Context Switch.

Context Switch

Switching from one running thread to the next thread is called as Context Switch.

Rules for Context Switch

1) A thread can voluntarily relinquish control: This is done by explicitly yielding,
sleeping, or blocking on pending I/O. In this scenario, all other threads are examined,
and the highest-priority thread that is ready to run is given the CPU.

2) A thread can be preempted by a higher-priority thread: In this case, a lower-priority

thread preempted by a higher-priority thread. This is called preemptive multitasking.
Note:

 In windows, threads of equal priority are time-sliced automatically in round-robin

fashion.
 For other types of operating systems, threads of equal priority must voluntarily

yield control to their peers. If they don’t, the other threads will not run.

UNIT-III 7

JAVA UNIT–IV Page 7

final void setPriority(int level)

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

final int getPriority()

By using getPriority(), we can obtain the current priority.

isAlive() & join()

isAlive() -> The isAlive() method returns true if the thread upon which it is called is

still running. It returns false otherwise.

final boolean isAlive()

join() -> This method waits until the thread on which it is called terminates.

final void join() throws InterruptedException

Example:

class ThreadDemo implements Runnable
{

public void run()
{

try

{
for(int i=0;i<3;i++)
{
System.out.println("Thread

Demo:"+Thread.currentThread().getName());
Thread.currentThread().sleep(1000);

}
}
catch(InterruptedException ie)
{

System.out.println("Thread interrupted");
}

}
}

class MultiThreadDemo{

public static void main(String ar[])
{

ThreadDemo r = new ThreadDemo();
Thread t1 = new Thread(r);
t1.setName("First Thread");
t1.setPriority(2);
t1.start();

Thread t2 = new Thread(r);
t2.setName("Second Thread");
t2.setPriority(7);

UNIT-III 8

JAVA UNIT–IV Page 8

t2.start();

Thread t3 = new Thread(r);
t3.setName("Third Thread");
t3.setPriority(9);
t3.start();

System.out.println("Thread One is alive: "+ t1.isAlive());
System.out.println("Thread Two is alive: "+ t2.isAlive());
System.out.println("Thread Three is alive: "+ t3.isAlive());
// wait for threads to finish
try {

System.out.println("Waiting for threads to finish.");
t1.join();
t2.join();
t3.join();

}
catch (InterruptedException e) {

System.out.println("Main thread Interrupted");
}

System.out.println("Thread One is alive: "+ t1.isAlive());
System.out.println("Thread Two is alive: "+ t2.isAlive());
System.out.println("Thread Three is alive: "+ t3.isAlive());

System.out.println("Main thread exiting.");
}

}

UNIT-III 9

JAVA UNIT–IV Page 9

Thread States / Life cycle of a thread

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

Obtaining A Thread’s State

We can obtain the current state of a thread by calling the getState() method defined by Thread.

Thread.State getState()

UNIT-III 10

JAVA UNIT–IV Page 10

Value State

BLOCKED A thread that has suspended execution because it is waiting to acquire a
lock

NEW A thread that has not begun execution.

RUNNABLE A thread that either is currently executing or will execute when it gains
access to the CPU.

TERMINATED A thread that has completed execution.

TIMED_WAITING A thread that has suspended execution for a specified period of time,
such as when it has called sleep(). This state is also entered when a
timeout version of wait() or join() is called.

WAITING A thread that has suspended execution because it is waiting for some
action to occur. For example, it is waiting because of a call to a non-
timeout version of wait() or join().

UNIT-III 11

JAVA UNIT–IV Page 11

Synchronization

Definition:

 When two or more threads need access to a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time.

 The process by which this is achieved is called synchronization.

 Process behind Synchronization

 Key to synchronization is the concept of the monitor.

 A monitor is an object that is used as a mutually exclusive lock.

 Only one thread can own a monitor at a given time.

 When a thread acquires a lock, it is said to have entered the monitor.

 All other threads attempting to enter the locked monitor will be suspended until thefirst

thread exits the monitor.

 These other threads are said to be waiting for the monitor.

Synchronizing code

We can synchronize the code in two ways:

1. Using synchronized methods

synchronized void test()

{

}

2. Using Synchronized statements (synchronized blocks)

synchronized statement

synchronized(objRef) {

// statements to be synchronized

}

Here, objRef is a reference to the object being synchronized

Example for Synchronization

class Account {

private int balance = 50;

public int getBalance()

UNIT-III 12

JAVA UNIT–IV Page 12

{

return balance;

}

public void withdraw(int amount)

{

balance = balance - amount;

}

}

class AccountDanger implements Runnable

{

private Account acct = new Account();

public void run() {

for (int x = 0; x < 5; x++) {

makeWithdrawal(10);

if (acct.getBalance() < 0) {

System.out.println("account is overdrawn!");

}

}

}

private synchronized void makeWithdrawal(int amt) {

if (acct.getBalance() >= amt) {

System.out.println(Thread.currentThread().getName()+ " is going

to withdraw");

try {

Thread.sleep(500);

}

catch(InterruptedException ex) { }

acct.withdraw(amt);

}

else {

System.out.println(Thread.currentThread().getName()+ "

completes the withdrawal");

UNIT-III 13

JAVA UNIT–IV Page 13

System.out.println("Not enough in account for " +

Thread.currentThread().getName()+ " to withdraw " + acct.getBalance());

}

}

}

public class SyncExample

{

public static void main (String [] args)

{

}

Output

AccountDanger r = new AccountDanger();

Thread t1 = new Thread(r);

t1.setName("A");

Thread t2 = new Thread(r);

t2.setName("B");

t1.start();

t2.start();

}

UNIT-III 14

JAVA UNIT–IV Page 14

Interthread Communication

 Java includes an elegant interprocess communication mechanism via the wait(), notify (),

and notifyAll() methods.

 These methods are implemented as final methods in Object, so all classes have them.

 All three methods can be called only from within a synchronized context.

wait() - wait() tells the calling thread to give up the monitor and go to sleep untilsome

other thread enters the same monitor and calls notify() or notifyAll().

notify() - notify() wakes up a thread that called wait() on the same object.

notifyAll() - notifyAll() wakes up all the threads that called wait() on the same object. One

of the threads will be granted access.

Example: Producer and Consumer Problem

Producer produces an item and consumer consumes an item produced by the producer

immediately. Producer should not produce any item until the consumer consumes the item.

Consumer should wait until producer produces a new item.

class Q

{

int n;

boolean valueSet = false;

synchronized int get() {

while(!valueSet)

try {

wait();

}

catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

UNIT-III 15

JAVA UNIT–IV Page 15

notify();

return n;

}

synchronized void put(int n) {

while(valueSet)

try {

wait();

}

catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

this.n = n;

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer implements Runnable

{

Q q;

Producer(Q q)

{

this.q = q;

Thread t = new Thread(this, "Producer");

t.start();

}

public void run()

{

int i = 0;

while(i<10)

{

q.put(i++);

}

}

UNIT-III 16

JAVA UNIT–IV Page 16

}

class Consumer implements Runnable

{

Q q;

Consumer(Q q)

{

this.q = q;

Thread t = new Thread(this, "Consumer");

t.start();

}

public void run()

{

int i = 0;

while(i < 10)

{

q.get();

}

}

}

class PC

{

public static void main(String args[])

{

Q q = new Q();

Producer p = new Producer(q);

Consumer c = new Consumer(q);

}

}

UNIT-III 17

JAVA UNIT–IV Page 17

Deadlock

 Deadlock describes a situation where two or more threads are blocked forever,waiting

for each other.

Example:

public class DeadlockThread {

public static Object Lock1 = new Object();

public static Object Lock2 = new Object();

public static void main(String args[]) {

ThreadDemo1 T1 = new ThreadDemo1();

ThreadDemo2 T2 = new ThreadDemo2();

T1.start();

T2.start();

}

private static class ThreadDemo1 extends Thread {

public void run() {

synchronized (Lock1) {

UNIT-III 18

JAVA UNIT–IV Page 18

System.out.println("Thread 1: Holding lock 1...");

try { Thread.sleep(10); }

catch (InterruptedException e) {}

System.out.println("Thread 1: Waiting for lock 2...");

synchronized (Lock2) {

System.out.println("Thread 1: Holding lock 1 & 2...");

}

}

}

}

private static class ThreadDemo2 extends Thread {

public void run() {

synchronized (Lock2) {

System.out.println("Thread 2: Holding lock 2...");

try { Thread.sleep(10); }

catch (InterruptedException e) {}

System.out.println("Thread 2: Waiting for lock 1...");

synchronized (Lock1) {

System.out.println("Thread 2: Holding lock 1 & 2...");

}

}

}

}

}

UNIT-III 19

JAVA UNIT–IV Page 19

Suspending, Resuming, and Stopping Threads

Sometimes, suspending execution of a thread is useful.

 Java 1.0 has methods for suspending,resuming and stopping threads.

Suspend() -> to pause a thread

Resume() -> to restart a thread

Stop() -> To stop the execution of a thread

 But these methods are inherently unsafe.

 Due to this, from Java 2.0, these methods are deprecated (available, but not

recommended to use them).

Example

// Suspending and resuming a thread the modern way.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

suspendFlag = false;

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 3; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(200);

synchronized(this) {

UNIT-III 20

JAVA UNIT–IV Page 20

while(suspendFlag) {

wait();

}

}

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

synchronized void mysuspend() {

suspendFlag = true;

}

synchronized void myresume() {

suspendFlag = false;

notify();

}

}

class SuspendResume {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try {

Thread.sleep(1000);

ob1.mysuspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.myresume();

System.out.println("Resuming thread One");

ob2.mysuspend();

UNIT-III 21

JAVA UNIT–IV Page 21

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.myresume();

System.out.println("Resuming thread Two");

}

catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

}

catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

UNIT-III 22

JAVA UNIT–IV Page 22

Input and Output (I/O)

stream

 Java programs perform I/O through streams.

 A stream is an abstraction that either produces or consumes information.

 A stream is linked to a physical device by the Java I/O system.

 Java implements streams within class hierarchies defined in the java.io package.

 Streams are two types:

o Byte streams

o Character Streams

Byte Streams

Byte streams provide a convenient means for handling input and output of bytes. Byte

streams are used, for example, when reading or writing binary data.

The Byte Stream classes

InputStream -> abstract class

OutputStream -> abstract class

BufferedInputStream

BufferedOutputStream

ByteArrayInputStream

ByteArrayOutputStream

DataInputStream

DataOutputStream

PrintStream

RandomAccessFile

Character Streams

Character streams provide a convenient means for handling input and output of

characters. They use Unicode and, therefore, can be internationalized. Also, in some

cases, character streams are more efficient than byte streams.

UNIT-III 23

JAVA UNIT–IV Page 23

Character Stream classes

Character streams are defined by using two class hierarchies. At the top are two

abstract classes: Reader and Writer. These abstract classes handle Unicode character

streams.

Reader -> abstract class

Writer -> abstract class

BufferedReader

BufferedWriter

CharArrayReader

CharArrayWriter

FileReader

FileWriter

InputStreamReader -> translates bytes to characters

OutputStreamWriter -> translates characters to bytes

PrintWriter -> output stream contains print() and println() methods

The Predefined Streams

System class defines three predefined streams – in,out, err

1) System.in is an object of type InputStream

2) System.out and System.err are objects of type PrintStream.

3) System.in refers to standard input, which is the keyboard by default.

4) System.out refers to the standard output stream.

5) System.err refers to the standard error stream, which also is the console by

default.

Reading Console Input – reading characters & Strings

 In Java, console input is accomplished by reading from System.in.

 To obtain a characterbased stream that is attached to the console, wrap System.in in a

BufferedReader object.

UNIT-III 24

JAVA UNIT–IV Page 24

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 To read a character from a BufferedReader, use read() method.

int read() throws IOException

 Each time that read() is called, it reads a character from the input stream and returns it

as an integer value. It returns –1 when the end of the stream is encountered.

Example

// Use a BufferedReader to read characters from the console.

import java.io.*;

class BRRead {

public static void main(String args[]) throws IOException {

char c;

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

System.out.println("Enter characters, 'q' to quit.");

// read characters

do {

c = (char) br.read();

System.out.println(c);

} while(c != 'q');

}

}

UNIT-III 25

JAVA UNIT–IV Page 25

Applet Fundamentals

An applet is a GUI based program. Applets are event –driven programs. applets do not

contain main() method

Two types:

AWT based

SWING based

 applets are small applications that are accessed on an Internet server, transported over the

Internet, automatically installed, and executed by Java compatible web browser or

appletviewer.

Applet Lifecycle / Applet Skeleton

 When an applet begins, the following methods are called, in this sequence:

1. init()

2. start()

3. paint()

 When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

UNIT-III 26

JAVA UNIT–IV Page 26

init() : The init() method is the first method to be called. This is where you should initialize

variables. This method is called only once during the run time of your applet.

start() : The start() method is called after init(). It is also called to restart an applet after it has

been stopped. start() is called each time an applet’s HTML document is displayed onscreen.

So, if a user leaves a web page and comes back, the applet resumes execution at start().

stop(): The stop() method is called when a web browser leaves the HTML document

containing the applet—when it goes to another page.

destroy(): The destroy() method is called when the environment determines that your applet

needs to be removed completely from memory. The stop() method is always called before

destroy().

AppletSkel.java
// An Applet skeleton.
import java.awt.*;
import java.applet.*;

public class AppletSkel extends Applet {
String s;
// Called first.
public void init() {

// initialization
s = "WELCOME TO JAVA APPLET";

}

/* Called second, after init(). Also called whenever the applet is restarted. */
public void start() {

// start or resume execution
System.out.println("START");

}

// Called when the applet is stopped.
public void stop() {

// suspends execution
System.out.println("STOPPED");

}

/* Called when applet is terminated. This is the last method executed. */
public void destroy() {

// perform shutdown activities
System.out.println("DESTROY");

}

// Called when an applet’s window must be restored.
public void paint(Graphics g) {

// redisplay contents of window

UNIT-III 27

JAVA UNIT–IV Page 27

g.setColor(Color.red);
g.drawString(s,20,20);

}
}

RunApplet.html

<applet code="AppletSkel.class" width=200 height=60> </applet>

Applet Program with Parameters

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

String myFont = getParameter("font");

String myString = getParameter("string");

int mySize = Integer.parseInt(getParameter("size"));

Font f = new Font(myFont, Font.BOLD, mySize);

g.setFont(f);

g.setColor(Color.red);

g.drawString(myString, 20, 20);

}

}

RunApplet.html

<applet code="SimpleApplet.class" width=200 height=60>

<PARAM NAME="font" VALUE="Dialog">

UNIT-III 28

JAVA UNIT–IV Page 28

<PARAM NAME="size" VALUE="24">

<PARAM NAME="string" VALUE="Hello, world...It's Java Applet">

</applet>

Enumerations

a) An enumeration is a list of named constants.

b) Java enumerations are class types.

c) Each enumeration constant is an object of its enumeration type.

d) Each enumeration constant has its own copy of any instance variables defined by the

enumeration.

e) All enumerations automatically inherit one: java.lang.Enum.

// An enumeration of apple varieties.

enum Apple {

A, B, C, D, E

}

 The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants.

 Each is implicitly declared as a public, static, final member of Apple.

 In the language of Java, these constants are called self-typed.

Built-in Methods of ENUM

2 methods: values() and valueOf()

UNIT-III 29

JAVA UNIT–IV Page 29

The values() and valueOf() Methods

All enumerations automatically contain two predefined methods: values() and valueOf().

Their general forms are shown here:

public static enum-type [] values()

public static enum-type valueOf(String str)

 The values() method returns an array that contains a list of the enumeration constants.

 The valueOf() method returns the enumeration constant whose value corresponds to

the string passed in str.

Enum Example:

// An enumeration of apple varieties.
enum Apple {

A, B, C, D, E
}

class EnumDemo {

public static void main(String args[]) {
Apple ap;
System.out.println("Here are all Apple constants:");
// use values()

Apple allapples[] = Apple.values();
for(Apple a : allapples)

System.out.println(a);
System.out.println();

// use valueOf()

ap = Apple.valueOf("Winesap");
System.out.println("ap contains " + ap);

}
}

Java enumerations with the constructors, instance variables and
method

// Use an enum constructor, instance variable, and method.

enum Apple {
A(10), B(9), C(12), D(15), E(8);

private int price; // price of each apple

UNIT-III 30

JAVA UNIT–IV Page 30

// Constructor
Apple(int p) {

price = p;
}
int getPrice() {

return price;
}

}

class EnumConsDemo {
public static void main(String args[]) {

Apple ap;

// Display price of B.
System.out.println("B costs " + Apple.B.getPrice() + " cents.\n");

// Display all apples and prices.
System.out.println("All apple prices:");
for(Apple a : Apple.values())

System.out.println(a + " costs " + a.getPrice() +" cents.");
}

}

Type Wrappers (Autoboxing and autounboxing)

 Type wrappers are classes that encapsulate a primitive type within an object.

 The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and

Boolean.

 Type wrappers are related directly to auto-boxing / auto-unboxing feature.

Type Wrapper Constructor Method name

Character Character(char ch) char charValue()

Boolean Boolean(boolean boolValue)

Boolean(String boolString)

boolean booleanValue()

Numeric Type Wrappers

Byte Byte(int num) byte byteValue()

Short Short(int num) short shortValue()

Long Long(int num),Long(String str) long longValue()

Float Float(float num) float floatValue()

UNIT-III 31

JAVA UNIT–IV Page 31

Double Double(double num) double doubleValue()

// Demonstrate a type wrapper.

class Wrap {

public static void main(String args[]) {

// boxing

Integer iOb = new Integer(100);

//unboxing

int i = iOb.intValue();

System.out.println(i + " " + iOb);

}

}

boxing: The process of encapsulating a value within an object is called boxing.

Unboxing: The process of extracting a value from a type wrapper is called unboxing.

Autoboxing and Autounboxing

Beginning with JDK 5, Java does this boxing and unboxing automatically through auto-boxing

and auto-unboxing features.

Autoboxing

Autoboxing is the process by which a primitive type is automatically encapsulated (boxed) into
its equivalent type wrapper.

Autounboxing

Auto-unboxing is the process by which the value of a boxed object is automatically extracted
(unboxed) from a type wrapper.

Autoboxing/Autounboxing- benefits

1. No manual boxing and unboxing values.
2. It prevents errors

3. It is very important to generics, which operate only on objects.

4. autoboxing makes working with the Collections Framework.

UNIT-III 32

JAVA UNIT–IV Page 32

Where it Works

1) In assignments
2) In Method arguments and return types
3) In Expressions
4) In switch statement and any loop statements

1) Autoboxing in assignments

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

2) Autoboxing in Methods

int m(Integer v) {
return v ; // auto-unbox to int

}

3) Autoboxing in expressions

Integer iOb, iOb2;
int i;
iOb = 100;

++iOb;

System.out.println("After ++iOb: " + iOb); // output: 101

iOb2 = iOb + (iOb / 3);
System.out.println("iOb2 after expression: " + iOb2); // output: 134

4) Autoboxing in switch and loops

Integer iOb = 2;

switch(iOb) {

case 1: System.out.println("one");
break;
case 2: System.out.println("two");
break;
default: System.out.println("error");

}

UNIT-III 33

JAVA UNIT–IV Page 33

Annotations

Definition:

Java Annotation is a tag that represents the metadata i.e. attached with class,

interface, methods or fields to indicate some additional information which can be
used by java compiler and JVM.

In Java, Annotations can be Built-in annotations or Custom annotations / user-
defined annotations.

Java’s Built-in Annotations / Predefined Annotation Types

 Built-In Java Annotations used in java code

@Override
@SuppressWarnings
@Deprecated

1) @Override

@Override annotation assures that the subclass method is overriding the parent
class method. If it is not so, compile time error occurs.

2) Deprecated

@Deprecated annoation marks that this method is deprecated so compiler prints
warning. It informs user that it may be removed in the future versions. So, it is
better not to use such methods.

3) SuppressWarnings

@SuppressWarnings annotation is used to suppress warnings issued by the
compiler.

 Built-In Java Annotations used in other annotations are called as meta-
annotations. There are several meta-annotation types defined

in java.lang.annotation.

@Target
@Retention
@Inherited
@Documented

1) @Target

UNIT-III 34

JAVA UNIT–IV Page 34

a) @Target annotation marks another annotation to restrict what kind of Java

elements the annotation can be applied to.

b) A target annotation specifies one of the following element types as its value:

ElementType.FIELD can be applied to a field or property.

ElementType.LOCAL_VARIABLE can be applied to a local variable.

ElementType.METHOD can be applied to a method-level annotation.

ElementType.PACKAGE can be applied to a package declaration.

ElementType.PARAMETER can be applied to the parameters of a method.

ElementType.TYPE can be applied to any element of a class.

2) @Retention

@Retention annotation specifies how the marked annotation is stored:

 RetentionPolicy.SOURCE – The marked annotation is retained only in

the source level and is ignored by the compiler.
 RetentionPolicy.CLASS – The marked annotation is retained by the

compiler at compile time, but is ignored by the Java Virtual Machine
(JVM).

 RetentionPolicy.RUNTIME – The marked annotation is retained by the

JVM so it can be used by the runtime environment.

3) @Inherited

@Inherited annotation indicates that the annotation type can be inherited from the
super class.

4) @Documented

@Documented annotation indicates that whenever the specified annotation is used
those elements should be documented using the Javadoc tool.

Built-in Annotations Example

class Animal{
void eat(){

System.out.println("eating something");
}

}

class Dog extends Animal{

@Override
void Eat(){

https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Target.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Retention.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Inherited.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Documented.html

UNIT-III 35

JAVA UNIT–IV Page 35

System.out.println("eating foods");
}//should be eatSomething

}
class TestAnnotation1{

public static void main(String args[]){
Animal a=new Dog();
a.eat();

}

}

Custom Annotations / User defined annotations

Java Custom annotations or Java User-defined annotations are easy to create and use.
The @interface element is used to declare an annotation. For example:

@interface MyAnnotation
{

}

Types of Annotation

There are three types of annotations.

1. Marker Annotation

2. Single-Value Annotation

3. Multi-Value Annotation

1) Marker Annotation

An annotation that has no method, is called marker annotation. For example:

@interface MyAnnotation{ }

The @Override and @Deprecated are marker annotations.

2) Single-value annotation

UNIT-III 36

JAVA UNIT–IV Page 36

An annotation that has one method, is called single-value annotation. We can provide

the default value also.

For example:

@interface MyAnnotation{

int value() default 0;

}

3) Multi-value Annotation

An annotation that has more than one method, is called Multi-Value annotation. For

example:

@interface MyAnnotation{

int value1();

String value2();

String value3();

}

}

Example of Custom Annotation (creating, applying and accessing annotation)

//Creating custom annotation
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@interface MyAnnotation{

int value();
}
//Applying annotation

class Hello{

@MyAnnotation(value=10)
public void sayHello(){

System.out.println("hello annotation");
}

}
//Accessing annotation
class TestCustomAnnotation{

public static void main(String args[])throws Exception{

Hello h=new Hello();

UNIT-III 37

JAVA UNIT–IV

 Page 37

Method m=h.getClass().getMethod("sayHello");

MyAnnotation manno=m.getAnnotation(MyAnnotation.class);
System.out.println("value is: "+manno.value());

}
}

Generics

 Generics are called as parameterized types.

 The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects.

 Generics can be applied to a class, interface or a method.

 Generics Work Only with Reference Types.

Advantages of Java Generics

1) Type-safety:
We can hold only a single type of objects in generics. It doesn’t allow to store other

objects.

2) Compile-Time Checking:
It is checked at compile time so problem will not occur at runtime. The good

programming strategy says it is far better to handle the problem at compile time than runtime.

3) Enabling programmers to implement generic algorithms

Generic class

The General Form of a Generic Class

class class-name<type-param-list > { // …

A class that can refer to any type is known as generic class. Here, we are using T type

parameter to create the generic class of specific type.

class MyGen<T>{
T obj;

void add(T obj){

this.obj=obj;

UNIT-III 38

JAVA UNIT–IV Page 38

}
T get(){

return obj;
}

}
class TestGenerics{

public static void main(String args[]){
MyGen<Integer> m=new MyGen<Integer>();
m.add(2);
//m.add("vivek");//Compile time error
System.out.println(m.get());

}

}

Generic Method

Like generic class, we can create generic method that can accept any type of argument.

public class GenericMethod{
public static < E > void printArray(E[] elements) {

for (E element : elements){
System.out.println(element);

}
System.out.println();

}

public static void main(String args[]) {
Integer[] intArray = { 10, 20, 30, 40, 50 };
Character[] charArray = { 'J', 'A', 'V', 'A'};

System.out.println("Printing Integer Array");
printArray(intArray);

System.out.println("Printing Character Array");
printArray(charArray);

}
}

UNIT-III 39

JAVA UNIT–IV Page 39

Generic Constructor

It is possible for constructors to be generic, even if their class is not.

// Use a generic constructor.
class GenCons {

private double val;

<T extends Number> GenCons(T arg) {
val = arg.doubleValue();

}
void showval() {

System.out.println("val: " + val);
}

}
class GenConsDemo {

public static void main(String args[]) {

GenCons test = new GenCons(100);
GenCons test2 = new GenCons(123.5F);

test.showval();
test2.showval();

}
}

Generic Interfaces

In addition to generic classes and methods, you can also have generic interfaces.

interface interface-name<type-param-list> { // …

class class-name<type-param-list> implements interface-name<type-arg-list> {

interface GenInterface<T> {
void test(T a);
T get();

}

class MyGen<T> implements GenInterface<T> {

}

Important Questions

Part-A

1. What is main thread?

2. Explain thread priorities.

UNIT-III 40

JAVA UNIT–IV Page 40

3. What is context switch

4. Define thread group and thread priority.

5. What are the benefits of Java’s multithreaded programming.

6. Define Generics? Explain its advantages.

7. Define autoboxing andunboxing.

8. Define Annotation.

9. Explain PrintWriter class

10. Define Stream? Explain it’s types.

Part-B

1. ExplainJavaThreadModelandThreadstates(transitions)

(OR)

What is Multithreaded programming? Explain thread states and how to obtain the thread

state.

2. Whatis Thread class and explain its methods: getName(),getPriority(),

isAlive(), join(),run(),sleep(),start(),currentThread().

3. What is multitasking? What are the types of multitasking? Write the differences between
process based multitasking and thread based multitasking.

4. Explain how to create a thread or multiple threads with an example.

5. What is synchronization? What is the need for synchronization? Explain with a suitable

example how to synchronize the code. (Account example)

6. In Java, how interthread communication happens. Explain with an example.

[OR]

Explain producer and consumer problem using Interthread communication with an

example.

[OR]

Explain the interthread communication methods - wait(), notify() and notifyAll().

7. What is Deadlock? Explain with an example.

8. Explain how to perform Suspending, Resuming and stopping threads in Java.

9. Define Stream? Explain the different types of streams.

[OR]

What is Stream? Explain byte stream and character stream classes.

10. Explain withanexample how toperform the reading the console inputandwriting the

console output.
11. Explain with an example how to read, write and closing of files (automatically).

12. WhatisanApplet?Explainthelifecycleof anapplet.

[OR]

Explain a simple Applet program with an example. Also explain how to compile and execute

an applet program

13. Define Generics? Explain the general form of a generic class and write its advantages.

14. ExplainGenericMethodandGenericInterfaces.

15. Define Enumerations? Explainwithanexample.

16. What is a Type wrapper? Explain Autoboxing and unboxing with an example.

17. Write short notes on Annotations.

UNIT – IV – END

UNIT-III 1

JAVA UNIT-V Page 1

AWT

UNIT-III 1

JAVA UNIT-V Page 1

(AN UGC AUTONOMOUS INSTITUTION)

Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade Recognized Under Section
2(f) of UGC Act 1956, ISO 9001:2015 Certified Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500

005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

 (R22)

 OOP through Java

Lecture Notes

 B. Tech II YEAR – I SEM

Prepared by

MOHD ANAS ALI
(Assistant Professor)

Dept. CSE(AIML)

http://www.mist.ac.in/
http://www.mist.ac.in/

UNIT-III 2

JAVA UNIT-V Page 2

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem. L T P C

 3 0 0 3

Course Objectives

● To Understand the basic object-oriented programming concepts and apply them in problem solving.

● To Illustrate inheritance concepts for reusing the program.

● To Demonstrate multitasking by using multiple threads and event handling

● To Develop data-centric applications using JDBC.

● To Understand the basics of java console and GUI based programming Course Outcomes

● Demonstrate the behavior of programs involving the basic programming constructs like control
structures, constructors, string handling and garbage collection.

● Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using

extend and implement keywords

● Use multithreading concepts to develop inter process communication.

 ● Understand the process of graphical user interface design and implementation using AWT or

swings.

● Develop applets that interact abundantly with the client environment and deploy on the server

UNIT - I Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop
concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents,

responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and

lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting,
simple java program, concepts of classes, objects, constructors, methods, access control, this keyword,

garbage collection, overloading methods and constructors, method binding, inheritance, overriding

and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

 UNIT - II Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object,
subclass, subtype, substitutability, forms of inheritance specialization, specification, construction,

extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules,

super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the
Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing

UNIT-III 3

JAVA UNIT-V Page 3

packages, differences between classes and interfaces, defining an interface, implementing interface,

applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III Exception handling and Multithreading-- Concepts of exception handling, benefits of

exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch,

throw, throws and finally, built in exceptions, creating own exception subclasses. String handling,
Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating

threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon

threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event
model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user

interface components- labels, button, canvas, scrollbars, text components, check box, checkbox

groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout
manager types – border, grid, flow, card and grid bag.

UNIT - V Applets – Concepts of Applets, differences between applets and applications, life cycle of

an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction,

limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame
and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio

buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

UNIT-III 4

JAVA UNIT-V Page 4

AWT

Object Oriented Programming using JAVA

UNIT V

awt was the first GUI framework in JAVA since 1.0. It defines numerous classes and methods to create

windows and simple control such as Labels, Buttons, and TextFields etc.

Delegation Event Model

The modern approach to handle events is based on delegation event model.

Delegation event model consists of only two parts – Source and Listeners.

Concept

A source generates an event and sends it to one or more listeners. In this scheme, the listener

simply waits until it receives an event.

Once an event is received, the listener processes the event and then returns. In this model,

Listeners must register with a source in order to receive an event notification.

Events

An event is an object that describes a state change in a source.

Ex: Pressing a button, entering a character via the keyboard, selecting an item in a list, and clicking the

mouse.

Event Sorces

A source is an object that generates an event. Sources may generate more than one type of event.

Ex: mouse, keyboard

UNIT-III 5

JAVA UNIT-V Page 5

Event Listeners

A listener is an object that is notified when an event occurs. It has two major requirements.

1) It must have been registered with one or more sources to receive notifications about specific

types of events.

2) It must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces, such as those

UNIT-III 6

JAVA UNIT-V Page 6

found in java.awt.event.

UNIT-III 7

JAVA UNIT-V Page 7

AWT classes & Hierarchy

Component

Component is an abstract class that encapsulates all of the attributes of a visual

component.

Except for menus, all user interface elements that are displayed on the screen and that interact

with the user are subclasses of Component.

Container

The Container class is a subclass of Component. Other Container objects can be stored inside of a

Container

A container is responsible for laying out (that is, positioning) any components that it

contains. It does this through the use of various layout managers.

Panel

The Panel class is a concrete subclass of Container. Panel is the superclass for Applet.
a Panel is a window that does not contain a title bar, menu bar, or border.

Window

The Window class creates a top-level window. A top-level window is not contained within any

other object; it sits directly on the desktop.

Frame

It is a subclass of Window and has a title bar, menu bar, borders, and resizing corners.

UNIT-III 8

JAVA UNIT-V Page 8

Creating Windows (Frame based and Applet based)

Windows are created by using applet and by using Frame.

Windows can be created :

1. By extending Applet class
2. By extending Frame class

a. Frame class is used to create child windows within applets

b. Top-level or child-windows of stand-alone applications

Frame constructor

Frame() throws HeadlessException Frame(String

title) throws HeadlessException

A HeadlessException is thrown if an attempt is made to create a Frame instance in an

environment that does not support user interaction.

Key methods in Frame windows

1. Setting the Window’s Dimensions

void setSize(int newWidth, int newHeight)

void setSize(Dimension newSize)

2. Get the window’s size

Dimension getSize()

3. Hiding and Showing a Window

After a frame window has been created, it will not be visible until you call setVisible(). void

setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

4. Setting a Window’s Title

void setTitle(String newTitle)

5. Closing a Frame Window

To close the window, We must implement the windowClosing() method of the

WindowListener interface. Inside windowClosing(), we must remove the window from the

screen by calling setVisible(false).

UNIT-III 9

JAVA UNIT-V Page 9

Creating a Frame window in an AWT-based Applet

Creating a new frame window from within an AWT-based applet is actually quite easy.

a) First, create a subclass of Frame.

b) Next, override any of the standard applet methods, such as init(), start(), and stop(), to show or

hide the frame as needed.

c) Finally, implement the windowClosing() method of the WindowListener interface, calling

setVisible(false) when the window is closed.

AppletFrame.java

import java.awt.*; import

java.applet.*; import
java.awt.event.*;

public class AppletFrame extends Applet

{

Frame f;

public void init(){
f = new SampleFrame("A frame window");
f.setSize(250,250);

}

public void start()

{
f.setVisible(true);

}
public void stop()

{
f.setVisible(false);

}

public void paint(Graphics g)

{
g.drawString("Applet window",10,20);

}
}

class SampleFrame extends Frame

{
SampleFrame(String title)

{
setTitle(title);

// remove the window when closed
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

setVisible(false);
}

});

UNIT-III 1
0

JAVA UNIT-V Page
10

}

public void paint(Graphics g)

{
g.drawString("This is in Frame windiw",10,40);

}

}

RunAppletFrame.html

<applet code ="AppletFrame" width=300 height=50>

</applet>

Output:

Creating a window using Frame class – AWT-window

import java.awt.*; import

java.applet.*; import

java.awt.event.*;

public class FrameWindow extends Frame

{
FrameWindow(String title)

{
setTitle(title);

// remove the window when closed

addWindowListener(new WindowAdapter() {

UNIT-III 1
1

JAVA UNIT-V Page
11

public void windowClosing(WindowEvent we) {

}

});

}

//setVisible(false); System.exit(0);

public void paint(Graphics g)

{
g.drawString("This is in Frame windiw",50,100);

}

public static void main(String ar[])

{

FrameWindow fw = new FrameWindow("An AWT based application");

fw.setSize(100,200);

fw.setVisible(true);
}

}

Output:

javac FrameWindow.java

java FrameWindow

Handling Events in a Frame Window using AWT based Applet

import java.awt.*; import
java.applet.*; import

java.awt.event.*;

public class AppletFrameEvents extends Applet

{

 Frame f;

UNIT-III 1
2

JAVA UNIT-V Page
12

public void init(){

f = new SampleFrame("A frame window");

f.setSize(250,250);
}
public void start()

{
f.setVisible(true);

}
public void stop()
{

f.setVisible(false);

}

public void paint(Graphics g)
{

g.drawString("Applet window",10,20);
}

}
class SampleFrame extends Frame implements MouseMotionListener

{
String msg = " ";

int mouseX=10,mouseY=40; int

movX=0,movY=0;

SampleFrame(String title)
{

setTitle(title);

// remove the window when closed
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

setVisible(false);

}
});

addMouseMotionListener(this);

}

public void mouseDragged(MouseEvent me) {

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "Mouse Dragged";

repaint();

}

public void mouseMoved(MouseEvent me) {

mouseX = me.getX();
mouseY = me.getY();

UNIT-III 1
3

JAVA UNIT-V Page
13

movX = me.getX();

movY = me.getY(); msg

= "Mouse Moved";
repaint();

}

public void paint(Graphics g)
{

g.drawString(msg,mouseX,mouseY);

g.drawString("Mouse at "+ movX +", "+movY,10,40);
}

}

Handling Events in a Frame Window using AWT

import java.awt.*; import
java.applet.*; import

java.awt.event.*;

public class FrameWindowEvents extends Frame implements MouseMotionListener

{

String msg = " ";

int mouseX=10,mouseY=40; int

movX=0,movY=0;
FrameWindowEvents (String title)
{

setTitle(title);

// remove the window when closed

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

System.exit(0);

}

});

addMouseMotionListener(this);
}

public void mouseDragged(MouseEvent me) {

mouseX = me.getX();
mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "Mouse Dragged";

UNIT-III 14

JAVA UNIT-V Page 14

repaint();

}

public void mouseMoved(MouseEvent me) {

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY(); msg

= "Mouse Moved";

repaint();
}

public void paint(Graphics g)
{

g.drawString(msg,mouseX,mouseY);

g.drawString("Mouse at "+ movX +", "+movY,10,40);

}

public static void main(String ar[])
{

FrameWindowEvents fw = new FrameWindowEvents("An AWT based
application");

fw.setSize(100,200);

fw.setVisible(true);
}

}

Graphics Class

Graphics class has methods which are used to display the information within a window.

Methods in Graphics class

1. Drawing Strings

drawstring(String msg,int x, int y)

2. Drawing Lines

void drawLine(int startX, int startY, int endX, int endY)

3. Drawing Rectangles

The drawRect() and fillRect() methods display an outlined and filled rectangle,

respectively.

UNIT-III 15

JAVA UNIT-V Page 15

void drawRect(int left, int top, int width, int height)
void fillRect(int left, int top, int width, int height)

void drawRoundRect(int left, int top, int width, int height, int xDiam, int yDiam) void
fillRoundRect(int left, int top, int width, int height, int xDiam, int yDiam)

4. Drawing Ellipses and Circles

To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). void

drawOval(int left, int top, int width, int height)

void fillOval(int left, int top, int width, int height)

5. Drawing Arcs

void drawArc(int left, int top, int width, int height, int startAngle,int sweepAngle) void

fillArc(int left, int top, int width, int height, int startAngle,int sweepAngle)

The arc is drawn counterclockwise if sweepAngle is positive, and clockwise if

sweepAngle is negative.

6. Drawing Polygons

 It is possible to draw arbitrarily shaped figures using drawPolygon() and

fillPolygon():

void drawPolygon(int x[], int y[], int numPoints) void fillPolygon(int x[], int y[], int numPoints)

 The polygon’s endpoints are specified by the coordinate pairs contained within the x

and y arrays. The number of points defined by these arrays is specified by numPoints.

Program to demonstrate Graphics class methods – Drawing methods

// Draw graphics elements.
import java.awt.*;

import java.applet.*;

public class GraphicsDemo extends Applet {

public void paint(Graphics g)

{

// Draw lines. g.drawLine(0,
0, 100, 90);
g.drawLine(0, 90, 100, 10);
g.drawLine(40, 25, 250, 80);

// Draw rectangles.

UNIT-III 16

JAVA UNIT-V Page 16

g.drawRect(10, 150, 60, 50);

g.fillRect(100, 150, 60, 50);

g.drawRoundRect(190, 150, 60, 50, 15, 15);
g.fillRoundRect(280, 150, 60, 50, 30, 40);

// Draw Ellipses and Circles

g.drawOval(10, 250, 50, 50);
g.fillOval(90, 250, 75, 50);
g.drawOval(190, 260, 100, 40);

// Draw Arcs
g.drawArc(10, 350, 70, 70, 0, 180);

g.fillArc(60, 350, 70, 70, 0, 75);

// Draw a polygon
int xpoints[] = {10, 200, 10, 200, 10};

int ypoints[] = {450, 450, 650, 650, 450};
int num = 6;

g.drawPolygon(xpoints, ypoints, num);

}

}

Output:

Color class

Java supports color in a portable, device-independent fashion. The AWT color system allows us to specify

any color we want. It then finds the best match for that color, given the limits of the display hardware

currently executing your program or applet.

UNIT-III 17

JAVA UNIT-V Page 17

We can create our own color by using the below constructor:

Color(int red, int green, int blue)

It takes three integers that specify the color as a mix of red, green, and blue. These
values must be between 0 and 255, as in this example:

new Color(255, 100, 100); // light red

Once we have created a color, we can use it to set the foreground and/or background color by using the

setForeground() and setBackground() methods.

Program on Color class

import java.awt.*;

import java.applet.*;

public class ColorAppletEx extends Applet

{
Color c = new Color(10,200,255);

public void init()

{

//setColor(c);
setBackground(c);
//setBackground(Color.red); // another way to set the background color

}

public void paint(Graphics g)
{

g.drawString("Java Applet Color", 15,25);
}

}

UNIT-III 18

JAVA UNIT-V Page 18

Font class

The AWT supports multiple type fonts. Fonts have a family name, font style and font size.

Methods in Font class

Method Description

String getFamily() Returns the name of the font family

String getName() Returns the logical name of the invoking font.

int getSize() Returns the size

int getStyle() Returns the style of the font

Determining the Available Fonts

To obtain the available fonts on our machine, use the getAvailableFontFamilyNames()

method defined by the GraphicsEnvironment class.

String[] getAvailableFontFamilyNames()

In addition, the getAllFonts() method is defined by the GraphicsEnvironment class.

Font[] getAllFonts()

Ex: Program to obtain the names of the available font families.

// Display Fonts
import java.applet.*;

import java.awt.*;

public class ShowFonts extends Applet {
public void paint(Graphics g) {

String msg = "";

String FontList[];

GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();

FontList = ge.getAvailableFontFamilyNames();

for(int i = 0; i < FontList.length; i++)
msg += FontList[i] + " ";

g.drawString(msg, 4, 16);
}

}

UNIT-III 19

JAVA UNIT-V Page 19

Output:

Creating and Selecting Font

To create a new font, construct a Font object that describes that font.

Font(String fontName, int fontStyle, int pointSize)

 fontName specifies the name of the desired font.

 The style of the font is specified by fontStyle. It may consist of one or more of these three

constants: Font.PLAIN, Font.BOLD, and Font.ITALIC.

 To combine styles, OR them together. For example, Font.BOLD | Font.ITALIC specifies a bold,

italics style.

 To use a font that you have created, you must select it using setFont(), which is defined by
Component. It has this general form:

void setFont(Font fontObj)

// Creating ans Selecting Fonts

import java.applet.*;

import java.awt.*;

public class CreateFont extends Applet {

Font f;

String msg=" ";
public void init()
{

f = new Font("Times New Roman",Font.BOLD, 12);
msg = "JAVA FONT APPLET";
setFont(f);

}

public void paint(Graphics g) {
g.drawString(msg, 4, 16);

}

}

Displaying a Font information

To obtain the information about the currently selected font, we must get the current font by calling

getFont() method.

UNIT-III 20

JAVA UNIT-V Page 20

public void paint(Graphics g) {
Font f = g.getFont();

String fontName = f.getName();

String fontFamily = f.getFamily();

int fontSize = f.getSize();
int fontStyle = f.getStyle();

}

FontMetrics Class

FontMetrics class is used to get the information about a font.

Methods in FontMetrics class

Method Description

Font getFont() Returns the font.

int getHeight() Returns the height of a line of text. This

value can be used to output multiple lines

of text in a window.

int stringWidth(String str) Returns the width of the string specified by

str.

int getLeading() Returns the space between lines of text.

// Demonstrate multiline output using FontMetrics class

import java.awt.*;
import java.applet.*;

public class FontMetricsEx extends Applet { int
X=0, Y=0; // current position String s1

= "This is on line one."; String s2 =

"This is on line two.";

public void init() {

Font f = new Font("Times New Roman", Font.PLAIN, 12);

setFont(f);
}
public void paint(Graphics g) {

FontMetrics fm = g.getFontMetrics();

Y += fm.getHeight(); // advance to next line

UNIT-III 21

JAVA UNIT-V Page 21

X = 0;

g.drawString(s1, X, Y);

X = fm.stringWidth(s1); // advance to end of line

Y += fm.getHeight(); // advance to next line X

= 0;
g.drawString(s2, X, Y);
X = fm.stringWidth(s2); // advance to end of line

}

}

AWT Controls

AWT supports the following controls:

1. Labels
2. Push buttons

3. Check boxes
4. Check box group

5. Choice lists
6. Lists

7. Scroll bars

8. Text Editing (TextField, TextArea)

1. Labels

A label is an object of type Label, and it contains a string, which it displays. Labels are passive

controls that do not support any interaction with the user.

Constructors

 Label() throws HeadlessException

-> This creates a blank label.

UNIT-III 22

JAVA UNIT-V Page 22

 Label(String str) throws HeadlessException

-> This creates a label that contains the string specified by str.

 Label(String str, int how) throws HeadlessException

The value of how must be one of these three constants: Label.LEFT, Label.RIGHT, or
Label.CENTER.

 setText(String str) -> we can set or change the text in a label by using the setText()

method.

 getText() -> We can obtain the current label by calling getText().

Example

public class LabelDemo extends Applet {

public void init() {
Label one = new Label("One");

Label two = new Label("Two");

Label three = new Label("Three");

// add labels to applet window

add(one);

add(two);

add(three);
}

}

2. Buttons

 A push button is a component that contains a label and that generates an event when it is

pressed.

 Push buttons are objects of type Button.

constructors

Button() throws HeadlessException

Button(String str) throws HeadlessException

 setLabel(String str) -> this is used to set the label.

 getLabel() -> this is used to retrieve the label

UNIT-III 23

JAVA UNIT-V Page 23

Event Handling with Buttons

a) Each time a button is pressed, an action event is generated.

b) The listener implements the ActionListener interface.

c) ActionListener defines the actionPerformed() method, which is called when an event

occurs.

// Program to demonstrate Button Event handling

import java.applet.*;

import java.awt.*; import
java.awt.event.*;

public class ButtonDemo extends Applet implements ActionListener{

String actionName,msg="";

public void init() {

Button b1 = new Button("One");

Button b2 = new Button("Two");

// add buttons to applet window

add(b1);
add(b2);

b1.addActionListener(this);

b2.addActionListener(this);
}

public void actionPerformed(ActionEvent ae)
{

actionName=ae.getActionCommand();

if(actionName.equals("One"))
msg = "Button One is Pressed";

else

msg = "Button Two is Pressed";

repaint();

}
public void paint(Graphics g)

{
g.drawString(msg,20,80);

}

}

3. Check Boxes

 A check box is a control that is used to turn an option on or off. It consists of a small box that can

either contain a check mark or not.
 Check boxes can be used individually or as part of a group. Check boxes are objects of the

Checkbox class.

UNIT-III 24

JAVA UNIT-V Page 24

constructors:

Checkbox() throws HeadlessException
Checkbox(String str) throws HeadlessException
Checkbox(String str, boolean on) throws HeadlessException

Checkbox(String str, boolean on, CheckboxGroup cbGroup) throws HeadlessException

Checkbox(String str, CheckboxGroup cbGroup, boolean on) throws HeadlessException

 If on is true, the check box is initially checked; otherwise, it is cleared.

 If thw check box is not part of a group, then cbGroup must be null.

 getState() -> Used to retrieve the current state of a check box

 setState(boolean on) -> We can set the state.

 getLabel() -> obtain the current label associated with a check box

 setLabel(String str) -> Used to set the label.

Event Handling with Checkboxes

1) Each time a check box is selected or deselected, an item event is generated.

2) Each listener implements the ItemListener interface.

3) That interface defines the itemStateChanged() method.

// Demonstrate check boxes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class CheckboxDemo extends Applet implements ItemListener { String

msg = "";

Checkbox winXP, win7;
public void init() {

winXP = new Checkbox("Windows XP", null, true);

win7 = new Checkbox("Windows 7");

add(winXP);
add(win7);

winXP.addItemListener(this);

win7.addItemListener(this);

}
public void itemStateChanged(ItemEvent ie) {

UNIT-III 25

JAVA UNIT-V Page 25

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";
g.drawString(msg, 6, 80);

msg = " Windows XP: " + winXP.getState();

g.drawString(msg, 6, 100);
msg = " Windows 7: " + win7.getState();

g.drawString(msg, 6, 120);
}

}

4. Checkbox Group

Check box group is used to create radio buttons. It is used to create a set of mutually

exclusive check boxes.

Check box groups are objects of type CheckboxGroup.

 getSelectedCheckbox() -> used to determine which check box in a group iscurrently

selected.

 setSelectedCheckbox(Checkbox ch) -> We can set a check box to be selected.

Example:

Checkbox windows, android, solaris, mac;

CheckboxGroup cbg;

cbg = new CheckboxGroup();

windows = new Checkbox("Windows", cbg, true);
android = new Checkbox("Android", cbg, false);

solaris = new Checkbox("Solaris", cbg, false); mac =

new Checkbox("Mac OS", cbg, false);

add(windows);

add(android);
add(solaris);

add(mac);

UNIT-III 26

JAVA UNIT-V Page 26

Event Handling with Checkbox Groups

1) Each time a check box is selected or deselected, an item event is generated.

2) Each listener implements the ItemListener interface.

3) That interface defines the itemStateChanged() method.

5. Choice Cntrols

 The Choice class is used to create a pop-up list of items from which the user may
choose.

 Thus, a Choice control is a form of menu.

 getSelectedItem() -> returns a string containing the name of the item

 int getSelectedIndex() -> returns the index of the item, The first item is at index 0. By

default, the first item added to the list is selected.

 getItemCount() -> obtain the number of items in the list.

Event Handling with Choice control

1) Each time a choice is selected, an item event is generated.

2) Each listener implements the ItemListener interface.

3) That interface defines the itemStateChanged() method.

// Demonstrate choice control

import java.awt.*;

import java.awt.event.*;
import java.applet.*;

public class ChoiceDemo extends Applet implements ItemListener {

Choice os, browser;

String msg = "";

public void init() {

os = new Choice();

browser = new Choice();
// add items to os list

os.add("Windows XP");

os.add("Windows 7");
os.add("Solaris");
os.add("Mac OS");
// add items to browser list

browser.add("Internet Explorer");

browser.add("Firefox");

UNIT-III 27

JAVA UNIT-V Page 27

browser.add("Opera");

// add choice lists to window

add(os);

add(browser);
// register to receive item events

os.addItemListener(this);
browser.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();
}

// Display current

// Display current selections.

public void paint(Graphics g) {
msg = "Current OS: ";

msg += os.getSelectedItem();

g.drawString(msg, 6, 120); msg

= "Current Browser: ";
msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

6. Lists

The List class provides a compact, multiple-choice, scrolling selection list.

Choice List
Shows only the selected item Shows any number of choices in the

visible window

Allows single selection Allows multiple selections

Single click generates ItemEvent Single click generates ItemEvent and
doubleclick generates ActionEvent

UNIT-III 28

JAVA UNIT-V Page 28

Constructors

 List() throws HeadlessException -> The first version creates a List

control that allows only one item to be selected at any one time.

 List(int numRows) throws HeadlessException -> the value of numRows
specifies the number of entries in the list that will always be visible

 List(int numRows, boolean multipleSelect) throws HeadlessException
-> if multipleSelect is true, then the user may select two or more items at
a time.

import java.applet.*;
import java.awt.*; import

java.awt.event.*;

public class ListDemo extends Applet implements ActionListener { List

os, browser;

String msg = "";
public void init() {

os = new List(4, true); browser

= new List(2, false);

// add items to os list
os.add("Windows XP");

os.add("Windows 7");

// add items to browser list
browser.add("Internet Explorer");

browser.add("Firefox");

browser.add("Opera");
browser.select(1);

// add lists to window

add(os); add(browser);

// register to receive action events
os.addActionListener(this);

browser.addActionListener(this);
}

public void actionPerformed(ActionEvent ae) {

repaint();
}

// Display current selections.

public void paint(Graphics g) {
int idx[];

msg = "Current OS: ";

idx = os.getSelectedIndexes();

for(int i=0; i<idx.length; i++)

msg += os.getItem(idx[i]) + " ";

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

UNIT-III 29

JAVA UNIT-V Page 29

msg += browser.getSelectedItem();
g.drawString(msg, 6, 140);

}
}

7. Scroll bars

 Scroll bars are used to select continuous values between a specified minimum and
maximum

 Scroll bars may be oriented horizontally or vertically.

 Each end has an arrow that you can click to move the current value of the scroll bar one unit in

the direction of the arrow.

Constructors

a) Scrollbar() throws HeadlessException -> creates a vertical scroll bar.

b) Scrollbar(int style) throws HeadlessException

• If style is Scrollbar.VERTICAL, a vertical scroll bar iscreated.

• If style is Scrollbar.HORIZONTAL, the scroll bar ishorizontal.

c) Scrollbar(int style, int initialValue, int thumbSize, int min, int max) throws

HeadlessException

getValue() -> To obtain the current value of the scroll bar.

UNIT-III 30

JAVA UNIT-V Page 30

Event Handling in Scrollbars

 Each time a user interacts with a scroll bar, an AdjustmentEvent object is generated.

 To process scroll bar events, you need to implement the AdjustmentListener interface.
 getAdjustmentType() method can be used to determine the type of the adjustment.

// Demonstrate scroll bars.
import java.awt.*;
import java.awt.event.*;
import java.applet.*; /* </applet> */

public class SBDemo extends Applet implements AdjustmentListener { String
msg = "";

Scrollbar vertSB, horzSB;

public void init() {

vertSB = new Scrollbar(Scrollbar.VERTICAL,0, 1, 0, 50);

vertSB.setPreferredSize(new Dimension(20, 100));

horzSB = new Scrollbar(Scrollbar.HORIZONTAL,0, 1, 0, 50);

horzSB.setPreferredSize(new Dimension(100, 20));

add(vertSB);

add(horzSB);

// register to receive adjustment events

vertSB.addAdjustmentListener(this);
horzSB.addAdjustmentListener(this);

}

public void adjustmentValueChanged(AdjustmentEvent ae) {

repaint();

}

// Display current value of scroll bars.
public void paint(Graphics g) {

msg = "Vertical: " + vertSB.getValue();
msg += ", Horizontal: " + horzSB.getValue();

g.drawString(msg, 6, 160);

}

}

UNIT-III 31

JAVA UNIT-V Page 31

8. Text Editing (TextField and TextArea classes)

The TextField class implements a single-line text-entry area, usually called an edit control.

TextField is a subclass of TextComponent.

Constructors

TextField() throws HeadlessException TextField(int

numChars) throws HeadlessException TextField(String

str) throws HeadlessException

TextField(String str, int numChars) throws HeadlessException

Methods

getText() -> Obtain the string currently contained in the text field

getSelectedText() -> returns the selected text.

setEchoChar(char ch) -> We can disable the echoing of the characters as they are typed.

Event Handling TextField

When user presses ENTER, an action event is generated.

Example

// Demonstrate text field.
import java.awt.*;

import java.awt.event.*;

UNIT-III 32

JAVA UNIT-V Page 32

import java.applet.*;

public class TextFieldDemo extends Applet implements ActionListener {

TextField name, pass;

public void init() {

Label namep = new Label("Name: "); Label

passp = new Label("Password: "); name =

new TextField(12);

pass = new TextField(8);
pass.setEchoChar('?');

add(namep);

add(name);
add(passp);

add(pass);

// register to receive action events

name.addActionListener(this);

pass.addActionListener(this); }

// User pressed Enter.

public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Selected text in name: "+ name.getSelectedText(), 6, 80);

g.drawString("Password: " + pass.getText(), 6, 100);
}

}

UNIT-III 33

JAVA UNIT-V Page 33

TextArea

It is a multiline editor. TextArea is a subclass of TextComponent.

Constructors:

TextArea() throws HeadlessException

TextArea(int numLines, int numChars) throws HeadlessException

TextArea(String str) throws HeadlessException

TextArea(String str, int numLines, int numChars) throws HeadlessException TextArea(String

str, int numLines, int numChars, int sBars) throws HeadlessException

Methods

 append(String str) -> appends the string specified by str to the end of the current text.

 insert(String str, int index) -> Inserts the string passed in str at the specified index.

 void replaceRange(String str, int startIndex, int endIndex) -> It replaces the

characters from startIndex to endIndex–1, with the replacement text passed in str.

// Demonstrate TextArea.

import java.awt.*;

import java.applet.*;

public class TextAreaDemo extends Applet {

public void init() {

String val = "Java 8 is the latest version of the most \n" +

"widely-used computer language for Internet programming.\n" +

"Building on a rich heritage, Java has advanced both \n" +

"the art and science of computer language design. \n\n";

TextArea text = new TextArea(val, 3, 30);

add(text);

}
}

UNIT-III 34

JAVA UNIT-V Page 34

Layout Managers

 A layout manager automatically arranges your controls within a window by using some type of

algorithm.

 Each Container object has a layout manager associated with it.

 A layout manager is an instance of any class that implements the LayoutManager

interface.

 The layout manager is set by the setLayout(LayoutManager lmg) method.

 Layout managers basically do two things:

o Calculate the minimum/preferred/maximum sizes for a container.

o Lay out the container's children.

There are 5 layouts supported by AWT:

1. FlowLayout

2. BorderLayout

3. GridLayout

4. GridbagLayout

5. CardLayout

Flow Layout

 The FlowLayout is used to arrange the components in a line, one after another.

 It simply lays out components in a single row, starting a new row if its container is not

sufficiently wide.

Constructors

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

UNIT-III 35

JAVA UNIT-V Page 35

Values for how : FlowLayout.LEFT, FlowLayout.CENTER, FlowLayout.RIGHT

FlowLayout.LEADING ,FlowLayout.TRAILING

FlowLayout Example:

// Use left-aligned flow layout.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class FlowLayoutDemo extends Applet implements ItemListener {

String msg = "";

Checkbox windows, android, solaris, mac;

public void init() {

// set left-aligned flow layout

setLayout(new FlowLayout(FlowLayout.CENTER));

windows = new Checkbox("Windows"); add(windows);

// register to receive item events

windows.addItemListener(this);

}

// Repaint when status of a check box changes.

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";

g.drawString(msg, 6, 80);

msg = " Windows: " + windows.getState();

g.drawString(msg, 6, 100);

}

}

UNIT-III 36

JAVA UNIT-V Page 36

BorderLayout

 The BorderLayout is used to

arrange the components in five regions:

north, south, east, west and center.

BorderLayout – constructors

1. BorderLayout() -> creates a default border layout

2. BorderLayout(int horz, int vert) -> allows to specify the horizontal and vertical space left

between components in horz and vert, respectively.

3. BorderLayout defines the following constants that specify the regions:

– BorderLayout.CENTER

– BorderLayout.SOUTH

– BorderLayout.EAST

– BorderLayout.WEST

– BorderLayout.NORTH

Adding the components to a BorderLauout

void add(Component compRef, Object region) -> region specifies where the

component will be added.

// Demonstrate BorderLayout.

import java.awt.*;

import java.applet.*;

import java.util.*;

public class BorderLayoutDemo extends Applet {

public void init() {

setLayout(new BorderLayout());

add(new Button("This is across the top."),BorderLayout.NORTH);

add(new Label("The footer message might go here."),BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

UNIT-III 37

JAVA UNIT-V Page 37

add(new Button("Left"), BorderLayout.WEST);

String msg = "Java programming - " +

"Applet programming" +

"\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

}

GridLayout

 GridLayout simply makes a bunch of components equal in size and displays them in the

requested number of rows and columns.

 GridLayout lays out components in a two-dimensional grid.

 When we instantiate a GridLayout, we define the number of rows and columns.

GridLayout Constructors

1. GridLayout() -> creates a single-column grid layout.

2. GridLayout(int numRows, int numColumns) -> creates a grid layout with the specified

number of rows and columns.

3. GridLayout(int numRows, int numColumns, int horz, int vert) -> specify the

horizontal and vertical space left between components in horz and vert, respectively.

UNIT-III 38

JAVA UNIT-V Page 38

Example: A sample program that creates a 4×4 grid and fills it in with 15 buttons, each

labeled with its index:

import java.awt.*;

import java.applet.*;

public class GridLayoutDemo extends Applet {

static final int n = 4;

public void init() {

setLayout(new GridLayout(n, n));

setFont(new Font("SansSerif", Font.BOLD, 24));

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

GridBagLayout

 GridBagLayout is a sophisticated, flexible layout manager.

 The rows in the grid can have different heights, and grid columns can have different widths.

 The key to the grid bag is that each component can be a different size, and each rowin the grid

can have a different number of columns.

 The location and size of each component in a grid bag are determined by a set of

constraints linked to it.

 The constraints are contained in an object of type GridBagConstraints

GridBagLayout – constructor

GridBagLayout defines only one constructor,

GridBagLayout()

UNIT-III 39

JAVA UNIT-V Page 39

GridBagLayout – constraints

GridBagConstraints.CENTER

GridBagConstraints.SOUTH

GridBagConstraints.EAST

GridBagConstraints.SOUTHEAST

GridBagConstraints.NORTH

GridBagConstraints.SOUTHWEST

GridBagConstraints.NORTHEAST

GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

int anchor -> Specifies the location of a component within a cell. The default is GridBagConstraints.CENTER.

int gridheight -> Specifies the height of component in terms of cells. The default is 1.

int gridwidth -> Specifies the width of component in terms of cells. The default is 1

int gridx -> Specifies the X coordinate of the cell to which the component will be added

int gridy -> Specifies the Y coordinate of the cell to which the component will be added.

Example:

// Use GridBagLayout.
import java.awt.*; import
java.awt.event.*; import

java.applet.*;

public class GridBagDemo extends Applet implements ItemListener {

String msg = "";

Checkbox windows, android, solaris, mac;

JAVA UNIT-V Page 40

public void init() {

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

// Define check boxes.

windows = new Checkbox("Windows ", null, true);

android = new Checkbox("Android");

gbc.anchor = GridBagConstraints.NORTHEAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(windows, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(android, gbc);

// Add the components.

add(windows);

add(android);

// Register to receive item events.

windows.addItemListener(this);

android.addItemListener(this);
}

// Repaint when status of a check box changes.

public void itemStateChanged(ItemEvent ie) {

repaint();
}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";
g.drawString(msg, 6, 80);

msg = " Windows: " + windows.getState();

g.drawString(msg, 6, 100);

msg = " Android: " + android.getState();

g.drawString(msg, 6, 120);
}

}

CardLayout

The CardLayout class is used to implement an area that contains different components at different

times.

It is similar to deck of cards.

41

JAVA UNIT-V Page 41

Example:

// Demonstrate CardLayout with the output shown above

import java.awt.*; import

java.awt.event.*; import

java.applet.*;

public class CardLayoutDemo extends Applet implements ActionListener{

Checkbox windowsXP, windows7, windows8, android, solaris, mac; Panel

osCards;

CardLayout cardLO;

Button Win, Other;

public void init() {

Win = new Button("Windows");

Other = new Button("Other");

add(Win);

add(Other);

cardLO = new CardLayout();

osCards = new Panel();

osCards.setLayout(cardLO); // set panel layout to card layout

windowsXP = new Checkbox("Windows XP", null, true);

windows7 = new Checkbox("Windows 7", null, false); android =

new Checkbox("Android");

solaris = new Checkbox("Solaris");

// add Windows check boxes to a panel

Panel winPan = new Panel();

winPan.add(windowsXP);

JAVA UNIT-V Page 42

winPan.add(windows7);

// Add other OS check boxes to a panel

Panel otherPan = new Panel();

otherPan.add(android);

otherPan.add(solaris);

// add panels to card deck panel

osCards.add(winPan, "Windows");

osCards.add(otherPan, "Other");

// add cards to main applet panel

add(osCards);

// register to receive action events

Win.addActionListener(this);

Other.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

if(ae.getSource() == Win) {

cardLO.show(osCards, "Windows");

}

else {

}

}

}

cardLO.show(osCards, "Other");

CardLayout – Methods

1) void first(Container deck) -> the first card in the deck will be shown

2) void last(Container deck) -> the last card in the deck will be shown

3) void next(Container deck) -> the next card in the deck will be shown

4) void previous(Container deck) -> the previous card in the deck will be shown

5) void show(Container deck, String cardName) -> displays the card whose name is

passed in cardName

JAVA UNIT-V Page 43

Menu Bars and Menus

A top-level window can have a menu bar associated with it. A menu bar displays a list of top- level

menu choices. Each choice is associated with a drop-down menu. This concept is implemented in the

AWT by the following classes: MenuBar, Menu, and MenuItem.

 To create a menu bar, first create an instance of MenuBar.

// create menu bar and add it to frame

MenuBar mbar = new MenuBar();

setMenuBar(mbar)

 Next, create instances of Menu that will define the selections displayed on the bar.

// create the menu items

Menu file = new Menu("File");

 Next, create individual menu items are of type MenuItem

MenuItem item1, item2, item3, item4, item5;

file.add(item1 = new MenuItem("New"));

file.add(item2 = new MenuItem("Open"));

Example

Create a Sample Menu Program

import java.awt.*; import

java.awt.event.*;

public class SimpleMenuExample extends Frame implements ActionListener

{
Menu file, edit;

public SimpleMenuExample()

{

MenuBar mb = new MenuBar(); // begin with creating menu bar

setMenuBar(mb); // add menu bar to frame

file = new Menu("File"); // create menus

edit = new Menu("Edit");

mb.add(file); // add menus to menu bar

mb.add(edit);

file.addActionListener(this); // link with ActionListener for event handling

edit.addActionListener(this);

file.add(new MenuItem("Open"));

44

JAVA UNIT-V Page 44

file.add(new MenuItem("Save"));
file.add(new MenuItem("Save As"));

file.addSeparator();

file.add(new MenuItem("Print"));
file.add(new MenuItem("Close"));

edit.add(new MenuItem("Cut"));

edit.add(new MenuItem("Copy"));

edit.add(new MenuItem("Paste"));
edit.addSeparator();

edit.add(new MenuItem("Special"));

edit.add(new MenuItem("Debug"));

setTitle("Simple Menu Program"); // frame creation methods

setSize(300, 300);

setVisible(true);

//closing the window

addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {

dispose();
}

});
}

public void actionPerformed(ActionEvent e)
{

String str = e.getActionCommand(); // know the menu item selected by the user

System.out.println("You selected " + str);
}
public static void main(String args[])

{
new SimpleMenuExample();

}
}

45

JAVA UNIT-V Page 45

Dialog Boxes

 We use a dialog box to hold a set of related controls.

 Dialog boxes are primarily used to obtain user input and are often child windows of a top-

level window.

 Dialog boxes don’t have menu bars.

 Dialog boxes are two types : modal or modeless.

 Modal dialog box : In this, other parts of the program can not be accessible while the dialog

box is active

 Modeless dialog box: In this, other parts of the program can be accessible while the dialog

box is active.

Constructors:

Dialog(Frame parentWindow, boolean mode) Dialog(Frame

parentWindow, String title, boolean mode)

Example:

 If mode is true, the dialog box is modal

 If mode is false, the dialog box is modeless

import java.awt.*; import

java.awt.event.*;

public class DialogExample {

private static Dialog d;

DialogExample() {

Frame f= new Frame();

d = new Dialog(f , "Dialog Example", true);

d.setLayout(new FlowLayout());

Button b = new Button ("OK");

b.addActionListener (new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

DialogExample.d.setVisible(false);

}

46

JAVA UNIT-V Page 46

});

d.add(new Label ("Click button to continue."));

d.add(b);

d.setSize(300,300);

d.setVisible(true);

}

public static void main(String args[])

{

new DialogExample();

}

}

FileDialog

 Java provides a built-in dialog box that lets the user specify a file.

 To create a file dialog box, instantiate an object of type FileDialog. This causes a file dialog

box to be displayed.

Constructors:

FileDialog(Frame parent) FileDialog(Frame

parent, String boxName)

FileDialog(Frame parent, String boxName, int how)

 If how is FileDialog.LOAD, then the box is selecting a file for reading.

 If how is FileDialog.SAVE, the box is selecting a file for writing.

 If how is omitted, the box is selecting a file for reading.

47

JAVA UNIT-V Page 47

EVENTS – EVENTS SOURCES – EVENTS LISTENERS

SOURCE Event Class Listener Listener Methods

MOUSE MouseEvent MouseListener,

MouseMotionListener

mouseClicked(),mouseEntered(),

mouseExited(),mousePressed()

mouseReleased(),

mouseDragged(),mouseMoved()

KEYBOARD KeyEvent KeyListener keyPressed(),keyTyped()

BUTTON ActionEvent ActionListener actionPerformed()

CHECKBOX ItemEvent ItemListener itemStateChanged()

LIST ItemEvent ItemListener itemStateChanged()

CHOICE ItemEvent ItemListener itemStateChanged()

MENUITEM ActionEvent ActionListener actionPerformed()

TEXTFIELD or

TEXTAREA

ActionEvent ActionListener actionPerformed()

SCROLLBAR AdjustmentEvent AdjustmentListener adjustmentValueChanged()

UNIT – V - END

48

JAVA UNIT-V Page 48

	UNIT I
	 Java Applets
	 Security
	 Portability
	 Servlets: Java on the Server Side
	 The Java Buzzwords
	 Object-Oriented Programming
	Two Paradigms

	The key Attributes of OOP:
	Encapsulation
	Inheritance
	Polymorphism
	A First Simple Program
	Entering the program:
	Compiling the Program
	Running the program
	First simple program line by line

	The Java Keywords
	Identifiers
	The Primitive Data Types
	Operators:
	Arithmetic Operators
	Increment and Decrement

	Relational and Logical Operators
	Short-circuit Logical operators:
	Assignment operators:
	Operator Precedence
	Using Parentheses
	The Bitwise Operators
	The Bitwise Logical Operators
	The Left Shift
	The Right Shift
	The ? Operator
	expression1 ? expression2 : expression3

	Control Statements
	Input characters from the keyboard
	if statement:
	Nested ifs
	The if-else-if Ladder
	statement;
	statement; (1)
	statement; (2)
	statement; (3)

	switch
	case.
	Nested switch Statements

	Iteration Statements
	do-while
	for loop
	// Show square roots of 1 to 9.
	Some variations on for loop:
	// compute the sum and product of the numbers 1 through 5 for(int i = 1; i <= 5; i++) {
	}
	i = 0; // move initialization out of loop for(; i < 10;) { System.out.println("Pass #" + i); i++; // increment loop control var

	NESTED LOOPS:
	for(i=0; i<=5; i++) {
	System.out.print("*"

	Using break
	// Using break with a label.
	Using continue
	return
	ARRAYS:
	One-Dimensional Arrays
	// Demonstrate a one-dimensional array.
	// Find the minimum and maximum values in an array.
	// Use array initializers.
	Multidimensional Arrays:
	// Demonstrate a two-dimensional array.
	Irregular arrays:
	Initializing multi dimensional array:
	// Initialize a two-dimensional array.
	Using the length member:
	// Use the length array member.
	The for-each style for loop:
	for(type itr-var: collection) statement-block

	Iterating Over Multidimensional Arrays
	else
	STRINGS:
	// Introduce String.
	// Some String operations.
	Using command line arguments:
	STRING HANDLING:
	String Constructors:
	// Demonstrate several String constructors.

	String Concatenation
	String age = "9";

	String Concatenation with Other Data Types
	int age = 9;

	Character Extraction
	charAt()
	// Demonstrate charAt() and length().
	getChars()
	String Comparison
	equals() and equalsIgnoreCase()
	equals() Versus = =
	regionMatches()
	// Demonstrate

	startsWith() and endsWith()
	compareTo() and compareToIgnoreCase()
	substring()
	replace()
	UNIT-I 44

	trim()
	Changing the Case of Characters Within a String
	// Demonstrate toUpperCase() and toLowerCase().

	UNIT I
	 Java Applets
	 Security
	 Portability
	 Servlets: Java on the Server Side
	 The Java Buzzwords
	 Object-Oriented Programming
	Two Paradigms

	The key Attributes of OOP:
	Encapsulation
	Inheritance
	Polymorphism
	A First Simple Program
	Entering the program:
	Compiling the Program
	Running the program
	First simple program line by line

	The Java Keywords
	Identifiers
	The Primitive Data Types
	Operators:
	Arithmetic Operators
	Increment and Decrement

	Relational and Logical Operators
	Short-circuit Logical operators:
	Assignment operators:
	Operator Precedence
	Using Parentheses
	The Bitwise Operators
	The Bitwise Logical Operators
	The Left Shift
	The Right Shift
	The ? Operator
	expression1 ? expression2 : expression3

	Control Statements
	Input characters from the keyboard
	if statement:
	Nested ifs
	The if-else-if Ladder
	statement;
	statement; (1)
	statement; (2)
	statement; (3)

	switch
	case.
	Nested switch Statements

	Iteration Statements
	do-while
	for loop
	// Show square roots of 1 to 9.
	Some variations on for loop:
	// compute the sum and product of the numbers 1 through 5 for(int i = 1; i <= 5; i++) {
	}
	i = 0; // move initialization out of loop for(; i < 10;) { System.out.println("Pass #" + i); i++; // increment loop control var

	NESTED LOOPS:
	for(i=0; i<=5; i++) {
	System.out.print("*"

	Using break
	// Using break with a label.
	Using continue
	return
	ARRAYS:
	One-Dimensional Arrays
	// Demonstrate a one-dimensional array.
	// Find the minimum and maximum values in an array.
	// Use array initializers.
	Multidimensional Arrays:
	// Demonstrate a two-dimensional array.
	Irregular arrays:
	Initializing multi dimensional array:
	// Initialize a two-dimensional array.
	Using the length member:
	// Use the length array member.
	The for-each style for loop:
	for(type itr-var: collection) statement-block

	Iterating Over Multidimensional Arrays
	else
	STRINGS:
	// Introduce String.
	// Some String operations.
	Using command line arguments:
	STRING HANDLING:
	String Constructors:
	// Demonstrate several String constructors.

	String Concatenation
	String age = "9";

	String Concatenation with Other Data Types
	int age = 9;

	Character Extraction
	charAt()
	// Demonstrate charAt() and length().
	getChars()
	String Comparison
	equals() and equalsIgnoreCase()
	equals() Versus = =
	regionMatches()
	// Demonstrate

	startsWith() and endsWith()
	compareTo() and compareToIgnoreCase()
	substring()
	replace()
	UNIT-I 44

	trim()
	Changing the Case of Characters Within a String
	// Demonstrate toUpperCase() and toLowerCase().

	Multithreaded Programming
	Multitasking

	The Java Thread Model
	a) The Thread class and the Runnable Interface
	b) The Main thread

	Thread Group:
	Creating and Starting a Thread
	2. By implementing Runnable interface
	Which of the above two approaches is better?

	Thread Priorities, isAlive() and join() methods
	Thread Priorities
	isAlive() & join()

	Thread States / Life cycle of a thread
	Obtaining A Thread’s State

	Synchronization
	Interthread Communication
	Example: Producer and Consumer Problem

	Deadlock
	Example:

	Suspending, Resuming, and Stopping Threads
	Example

	Input and Output (I/O)
	stream
	Byte Streams
	The Byte Stream classes

	Character Streams
	Character Stream classes

	The Predefined Streams
	Reading Console Input – reading characters & Strings
	AppletSkel.java
	RunApplet.html

	Enumerations
	The values() and valueOf() Methods
	Autoboxing
	Autounboxing
	Autoboxing/Autounboxing- benefits
	Where it Works
	2) Autoboxing in Methods
	3) Autoboxing in expressions
	4) Autoboxing in switch and loops

	Annotations
	 Built-In Java Annotations used in java code
	1) @Override
	2) Deprecated
	3) SuppressWarnings
	in java.lang.annotation.
	Built-in Annotations Example

	Generics
	Advantages of Java Generics
	The General Form of a Generic Class
	Generic Method
	Generic Constructor
	Generic Interfaces

	Delegation Event Model
	Events
	Event Sorces
	Event Listeners
	Component
	Container
	Panel
	Window
	Frame

	Creating Windows (Frame based and Applet based)
	Frame constructor
	1. Setting the Window’s Dimensions
	2. Get the window’s size
	3. Hiding and Showing a Window
	4. Setting a Window’s Title
	5. Closing a Frame Window
	Creating a Frame window in an AWT-based Applet
	Creating a window using Frame class – AWT-window
	Handling Events in a Frame Window using AWT based Applet
	Handling Events in a Frame Window using AWT

	Graphics Class
	Methods in Graphics class
	4. Drawing Ellipses and Circles
	5. Drawing Arcs
	6. Drawing Polygons
	Program to demonstrate Graphics class methods – Drawing methods

	Color class
	Program on Color class

	Font class
	Methods in Font class
	Creating and Selecting Font
	Displaying a Font information

	FontMetrics Class
	Methods in FontMetrics class

	AWT Controls
	1. Labels
	3. Check Boxes
	4. Checkbox Group
	5. Choice Cntrols
	Event Handling with Choice control

	6. Lists
	Constructors
	7. Scroll bars
	Constructors (1)
	Event Handling in Scrollbars
	8. Text Editing (TextField and TextArea classes)
	Constructors (2)
	Methods
	Event Handling TextField
	Example
	TextArea

	Layout Managers
	BorderLayout
	BorderLayout – constructors

	GridLayout
	GridLayout Constructors

	GridBagLayout
	GridBagLayout – constructor
	GridBagLayout – constraints

	CardLayout

	Menu Bars and Menus
	Dialog Boxes
	FileDialog
	UNIT – V - END

